Low Rank Matrix Recovery via Robust Outlier Estimation

In practice, high-dimensional data are typically sampled from low-dimensional subspaces, but with intrusion of outliers and/or noises. Recovering the underlying structure and the pollution from the observations is of utmost importance to understanding the data. Besides properly modeling the subspace...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - (2018) vom: 12. Juli
1. Verfasser: Guo, Xiaojie (VerfasserIn)
Weitere Verfasser: Lin, Zhouchen
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article