Multi-Oriented and Multi-Lingual Scene Text Detection with Direct Regression

Multi-oriented and multi-lingual scene text detection plays an important role in computer vision area and is challenging due to the wide variety of text and background. In this paper, firstly we point out the two key tasks when extending CNN based object detection frameworks to scene text detection....

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - (2018) vom: 12. Juli
1. Verfasser: He, Wenhao (VerfasserIn)
Weitere Verfasser: Zhang, Xu-Yao, Yin, Fei, Liu, Cheng-Lin
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM286514648
003 DE-627
005 20240229161845.0
007 cr uuu---uuuuu
008 231225s2018 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2018.2855399  |2 doi 
028 5 2 |a pubmed24n1308.xml 
035 |a (DE-627)NLM286514648 
035 |a (NLM)30010560 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a He, Wenhao  |e verfasserin  |4 aut 
245 1 0 |a Multi-Oriented and Multi-Lingual Scene Text Detection with Direct Regression 
264 1 |c 2018 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 27.02.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a Multi-oriented and multi-lingual scene text detection plays an important role in computer vision area and is challenging due to the wide variety of text and background. In this paper, firstly we point out the two key tasks when extending CNN based object detection frameworks to scene text detection. The first task is to localize the text region by a down-sampled segmentation based module, and the second task is to regress the boundaries of text region determined by the first task. Secondly, we propose a scene text detection framework based on fully convolutional network (FCN) with a bi-task prediction module in which one is pixel-wise classification between text and non-text, and the other is pixel-wise regression to determine the vertex coordinates of quadrilateral text boundaries. Post-processing for word-level detection is based on Non-Maximum Suppression (NMS), and for line-level detection we design a heuristic line segments grouping method to localize long text lines. We evaluated the proposed framework on various benchmarks including multi-oriented and multi-lingual scene text datasets, and achieved state-of-the-art performance on most of them. We also provide abundant ablation experiments to analyze several key factors in building high performance CNN based scene text detection systems 
650 4 |a Journal Article 
700 1 |a Zhang, Xu-Yao  |e verfasserin  |4 aut 
700 1 |a Yin, Fei  |e verfasserin  |4 aut 
700 1 |a Liu, Cheng-Lin  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g (2018) vom: 12. Juli  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g year:2018  |g day:12  |g month:07 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2018.2855399  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |j 2018  |b 12  |c 07