StackGAN++ : Realistic Image Synthesis with Stacked Generative Adversarial Networks

Although Generative Adversarial Networks (GANs) have shown remarkable success in various tasks, they still face challenges in generating high quality images. In this paper, we propose Stacked Generative Adversarial Networks (StackGANs) aimed at generating high-resolution photo-realistic images. Firs...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 41(2019), 8 vom: 16. Aug., Seite 1947-1962
1. Verfasser: Zhang, Han (VerfasserIn)
Weitere Verfasser: Xu, Tao, Li, Hongsheng, Zhang, Shaoting, Wang, Xiaogang, Huang, Xiaolei, Metaxas, Dimitris N
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM286514524
003 DE-627
005 20231225051907.0
007 cr uuu---uuuuu
008 231225s2019 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2018.2856256  |2 doi 
028 5 2 |a pubmed24n0955.xml 
035 |a (DE-627)NLM286514524 
035 |a (NLM)30010548 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhang, Han  |e verfasserin  |4 aut 
245 1 0 |a StackGAN++  |b Realistic Image Synthesis with Stacked Generative Adversarial Networks 
264 1 |c 2019 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 08.04.2022 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Although Generative Adversarial Networks (GANs) have shown remarkable success in various tasks, they still face challenges in generating high quality images. In this paper, we propose Stacked Generative Adversarial Networks (StackGANs) aimed at generating high-resolution photo-realistic images. First, we propose a two-stage generative adversarial network architecture, StackGAN-v1, for text-to-image synthesis. The Stage-I GAN sketches the primitive shape and colors of a scene based on a given text description, yielding low-resolution images. The Stage-II GAN takes Stage-I results and the text description as inputs, and generates high-resolution images with photo-realistic details. Second, an advanced multi-stage generative adversarial network architecture, StackGAN-v2, is proposed for both conditional and unconditional generative tasks. Our StackGAN-v2 consists of multiple generators and multiple discriminators arranged in a tree-like structure; images at multiple scales corresponding to the same scene are generated from different branches of the tree. StackGAN-v2 shows more stable training behavior than StackGAN-v1 by jointly approximating multiple distributions. Extensive experiments demonstrate that the proposed stacked generative adversarial networks significantly outperform other state-of-the-art methods in generating photo-realistic images 
650 4 |a Journal Article 
700 1 |a Xu, Tao  |e verfasserin  |4 aut 
700 1 |a Li, Hongsheng  |e verfasserin  |4 aut 
700 1 |a Zhang, Shaoting  |e verfasserin  |4 aut 
700 1 |a Wang, Xiaogang  |e verfasserin  |4 aut 
700 1 |a Huang, Xiaolei  |e verfasserin  |4 aut 
700 1 |a Metaxas, Dimitris N  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 41(2019), 8 vom: 16. Aug., Seite 1947-1962  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:41  |g year:2019  |g number:8  |g day:16  |g month:08  |g pages:1947-1962 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2018.2856256  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 41  |j 2019  |e 8  |b 16  |c 08  |h 1947-1962