Adaptive RGB Image Recognition by Visual-Depth Embedding

Recognizing RGB images from RGB-D data is a promising application, which significantly reduces the cost while can still retain high recognition rates. However, existing methods still suffer from the domain shifting problem due to conventional surveillance cameras and depth sensors are using differen...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - (2018) vom: 16. Feb.
1. Verfasser: Cai, Ziyun (VerfasserIn)
Weitere Verfasser: Long, Yang, Shao, Ling
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM286373270
003 DE-627
005 20250223192234.0
007 cr uuu---uuuuu
008 231225s2018 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2018.2806839  |2 doi 
028 5 2 |a pubmed25n0954.xml 
035 |a (DE-627)NLM286373270 
035 |a (NLM)29994784 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Cai, Ziyun  |e verfasserin  |4 aut 
245 1 0 |a Adaptive RGB Image Recognition by Visual-Depth Embedding 
264 1 |c 2018 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 27.02.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a Recognizing RGB images from RGB-D data is a promising application, which significantly reduces the cost while can still retain high recognition rates. However, existing methods still suffer from the domain shifting problem due to conventional surveillance cameras and depth sensors are using different mechanisms. In this paper, we aim to simultaneously solve the above two challenges: 1) how to take advantage of the additional depth information in the source domain? 2) how to reduce the data distribution mismatch between the source and target domains? We propose a novel method called adaptive Visual- Depth Embedding (aVDE) which learns the compact shared latent space between two representations of labeled RGB and depth modalities in the source domain first. Then the shared latent space can help the transfer of the depth information to the unlabeled target dataset. At last, aVDE models two separate learning strategies for domain adaptation (feature matching and instance reweighting) in a unified optimization problem, which matches features and reweights instances jointly across the shared latent space and the projected target domain for an adaptive classifier. We test our method on five pairs of datasets for object recognition and scene classification, the results of which demonstrates the effectiveness of our proposed method 
650 4 |a Journal Article 
700 1 |a Long, Yang  |e verfasserin  |4 aut 
700 1 |a Shao, Ling  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g (2018) vom: 16. Feb.  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g year:2018  |g day:16  |g month:02 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2018.2806839  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |j 2018  |b 16  |c 02