Fusing Hyperspectral and Multispectral Images via Coupled Sparse Tensor Factorization

Fusing a low spatial resolution hyperspectral image (LR-HSI) with a high spatial resolution multispectral image (HR-MSI) to obtain a high spatial resolution hyperspectral image (HR-HSI) has attracted increasing interest in recent years. In this paper, we propose a coupled sparse tensor factorization...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - (2018) vom: 15. Mai
1. Verfasser: Li, Shutao (VerfasserIn)
Weitere Verfasser: Dian, Renwei, Fang, Leyuan, Bioucas-Dias, Jose M
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM286373092
003 DE-627
005 20240229161837.0
007 cr uuu---uuuuu
008 231225s2018 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2018.2836307  |2 doi 
028 5 2 |a pubmed24n1308.xml 
035 |a (DE-627)NLM286373092 
035 |a (NLM)29994767 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Li, Shutao  |e verfasserin  |4 aut 
245 1 0 |a Fusing Hyperspectral and Multispectral Images via Coupled Sparse Tensor Factorization 
264 1 |c 2018 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 27.02.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a Fusing a low spatial resolution hyperspectral image (LR-HSI) with a high spatial resolution multispectral image (HR-MSI) to obtain a high spatial resolution hyperspectral image (HR-HSI) has attracted increasing interest in recent years. In this paper, we propose a coupled sparse tensor factorization (CSTF) based approach for fusing such images. In the proposed CSTF method, we consider an HR-HSI as a three-dimensional tensor and redefine the fusion problem as the estimation of a core tensor and dictionaries of the three modes. The high spatial-spectral correlations in the HR-HSI are modeled by incorporating a regularizer which promotes sparse core tensors. The estimation of the dictionaries and the core tensor are formulated as a coupled tensor factorization of the LR-HSI and of the HR-MSI. Experiments on two remotely sensed HSIs demonstrate the superiority of the proposed CSTF algorithm over current state-of-the-art HSI-MSI fusion approaches 
650 4 |a Journal Article 
700 1 |a Dian, Renwei  |e verfasserin  |4 aut 
700 1 |a Fang, Leyuan  |e verfasserin  |4 aut 
700 1 |a Bioucas-Dias, Jose M  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g (2018) vom: 15. Mai  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g year:2018  |g day:15  |g month:05 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2018.2836307  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |j 2018  |b 15  |c 05