Outlier Detection for Robust Multi-Dimensional Scaling

Multi-dimensional scaling (MDS) plays a central role in data-exploration, dimensionality reduction and visualization. State-of-the-art MDS algorithms are not robust to outliers, yielding significant errors in the embedding even when only a handful of outliers are present. In this paper, we introduce...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 41(2019), 9 vom: 27. Sept., Seite 2273-2279
Auteur principal: Blouvshtein, Leonid (Auteur)
Autres auteurs: Cohen-Or, Daniel
Format: Article en ligne
Langue:English
Publié: 2019
Accès à la collection:IEEE transactions on pattern analysis and machine intelligence
Sujets:Journal Article