Semi-supervised Deep Domain Adaptation via Coupled Neural Networks

Domain adaptation is a promising technique when addressing limited or no labeled target data by borrowing well-labeled knowledge from the auxiliary source data. Recently, researchers have exploited multi-layer structures for discriminative feature learning to reduce the domain discrepancy. However,...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 27(2018), 11 vom: 18. Nov., Seite 5214-5224
1. Verfasser: Ding, Zhengming (VerfasserIn)
Weitere Verfasser: Nasrabadi, Nasser M, Fu, Yun
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM286372193
003 DE-627
005 20231225051544.0
007 cr uuu---uuuuu
008 231225s2018 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2018.2851067  |2 doi 
028 5 2 |a pubmed24n0954.xml 
035 |a (DE-627)NLM286372193 
035 |a (NLM)29994676 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Ding, Zhengming  |e verfasserin  |4 aut 
245 1 0 |a Semi-supervised Deep Domain Adaptation via Coupled Neural Networks 
264 1 |c 2018 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 31.07.2018 
500 |a Date Revised 31.07.2018 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Domain adaptation is a promising technique when addressing limited or no labeled target data by borrowing well-labeled knowledge from the auxiliary source data. Recently, researchers have exploited multi-layer structures for discriminative feature learning to reduce the domain discrepancy. However, there are limited research efforts on simultaneously building a deep structure and a discriminative classifier over both labeled source and unlabeled target. In this paper, we propose a semi-supervised deep domain adaptation framework, in which the multi-layer feature extractor and a multi-class classifier are jointly learned to benefit from each other. Specifically, we develop a novel semi-supervised class-wise adaptation manner to fight off the conditional distribution mismatch between two domains by assigning a probabilistic label to each target sample, i.e., multiple class labels with different probabilities. Furthermore, a multi-class classifier is simultaneously trained on labeled source and unlabeled target samples in a semi-supervised fashion. In this way, the deep structure can formally alleviate the domain divergence and enhance the feature transferability. Experimental evaluations on several standard cross-domain benchmarks verify the superiority of our proposed approach 
650 4 |a Journal Article 
700 1 |a Nasrabadi, Nasser M  |e verfasserin  |4 aut 
700 1 |a Fu, Yun  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 27(2018), 11 vom: 18. Nov., Seite 5214-5224  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:27  |g year:2018  |g number:11  |g day:18  |g month:11  |g pages:5214-5224 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2018.2851067  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 27  |j 2018  |e 11  |b 18  |c 11  |h 5214-5224