DesnowNet : Context-Aware Deep Network for Snow Removal

Existing learning-based atmospheric particle-removal approaches such as those used for rainy and hazy images are designed with strong assumptions regarding spatial frequency, trajectory, and translucency. However, the removal of snow particles is more complicated because they possess additional attr...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - (2018) vom: 14. Feb.
1. Verfasser: Liu, Yun-Fu (VerfasserIn)
Weitere Verfasser: Jaw, Da-Wei, Huang, Shih-Chia, Hwang, Jenq-Neng
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM286371766
003 DE-627
005 20250223192219.0
007 cr uuu---uuuuu
008 231225s2018 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2018.2806202  |2 doi 
028 5 2 |a pubmed25n0954.xml 
035 |a (DE-627)NLM286371766 
035 |a (NLM)29994633 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Liu, Yun-Fu  |e verfasserin  |4 aut 
245 1 0 |a DesnowNet  |b Context-Aware Deep Network for Snow Removal 
264 1 |c 2018 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 27.02.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a Existing learning-based atmospheric particle-removal approaches such as those used for rainy and hazy images are designed with strong assumptions regarding spatial frequency, trajectory, and translucency. However, the removal of snow particles is more complicated because they possess additional attributes of particle size and shape, and these attributes may vary within a single image. Currently, hand-crafted features are still the mainstream for snow removal, making significant generalization difficult to achieve. In response, we have designed a multistage network named DesnowNet to in turn deal with the removal of translucent and opaque snow particles. We also differentiate snow attributes of translucency and chromatic aberration for accurate estimation. Moreover, our approach individually estimates residual complements of the snow-free images to recover details obscured by opaque snow. Additionally, a multi-scale design is utilized throughout the entire network to model the diversity of snow. As demonstrated in the qualitative and quantitative experiments, our approach outperforms state-of-the-art learning-based atmospheric phenomena removal methods and one semantic segmentation baseline on the proposed Snow100K dataset. The results indicate our network would benefit applications involving computer vision and graphics 
650 4 |a Journal Article 
700 1 |a Jaw, Da-Wei  |e verfasserin  |4 aut 
700 1 |a Huang, Shih-Chia  |e verfasserin  |4 aut 
700 1 |a Hwang, Jenq-Neng  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g (2018) vom: 14. Feb.  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g year:2018  |g day:14  |g month:02 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2018.2806202  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |j 2018  |b 14  |c 02