Missing Surface Estimation Based on Modified Tikhonov Regularization : Application for Destructed Dental Tissue

Estimation of missing digital information is mostly addressed by one or two-dimensional signal processing methods; however, this problem can emerge in multi-dimensional data including 3D images. Examples of 3D images dealing with missing edge information are often found using dental micro-CT, where...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - (2018) vom: 31. Jan.
1. Verfasser: Lashgari, Mojtaba (VerfasserIn)
Weitere Verfasser: Shahmoradi, Mahdi, Rabbani, Hossein, Swain, Michael
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM286371057
003 DE-627
005 20240229161836.0
007 cr uuu---uuuuu
008 231225s2018 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2018.2800289  |2 doi 
028 5 2 |a pubmed24n1308.xml 
035 |a (DE-627)NLM286371057 
035 |a (NLM)29994562 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Lashgari, Mojtaba  |e verfasserin  |4 aut 
245 1 0 |a Missing Surface Estimation Based on Modified Tikhonov Regularization  |b Application for Destructed Dental Tissue 
264 1 |c 2018 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 27.02.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a Estimation of missing digital information is mostly addressed by one or two-dimensional signal processing methods; however, this problem can emerge in multi-dimensional data including 3D images. Examples of 3D images dealing with missing edge information are often found using dental micro-CT, where the natural contours of dental enamel and dentine are partially dissolved or lost by caries. In this paper, we present a novel sequential approach to estimate the missing surface of an object. First, an initial correct contour is determined interactively or automatically, for the starting slice. This contour information defines the local search area and provides the overall estimation pattern for the edge candidates in the next slice. The search for edge candidates in the next slice is performed in the perpendicular direction to the obtained initial edge in order to find and label the corrupted edge candidates. Subsequently, the location information of both initial and nominated edge candidates are transformed and segregated into two independent signals (X-coordinates and Y-coordinates) and the problem is changed into error concealment. In the next step, the missing samples of these signals are estimated using a modified Tikhonov regularization model with two new terms. One term contributes in the denoising of the corrupted signal by defining an estimation model for a group of mildly destructed samples, and the other term contributes in the estimation of the missing samples with the highest similarity to the samples of the obtained signals from the previous slice. Finally, the reconstructed signals are transformed inversely to edge pixel representation. The estimated edges in each slice are considered as initial edge information for the next slice and this procedure is repeated slice by slice until the entire contour of the destructed surface is estimated. The visual results as well as quantitative results (using both contour-based and area-based metrics) for seven image datasets of tooth samples with considerable destruction of the dentin-enamel junction (DEJ) demonstrates that the proposed method can accurately interpolate the shape and the position of the missing surfaces in computed tomography images in both two and three dimensions (e.g. 14.87 ±3.87 μ m of mean distance (MD) error for the proposed method versus 7.33 ±0.27 μm of MD error between human experts and 1.25 ±~0 % error rate (ER) of the proposed method versus 0.64 ±~0 % of ER between human experts (~1% difference)) 
650 4 |a Journal Article 
700 1 |a Shahmoradi, Mahdi  |e verfasserin  |4 aut 
700 1 |a Rabbani, Hossein  |e verfasserin  |4 aut 
700 1 |a Swain, Michael  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g (2018) vom: 31. Jan.  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g year:2018  |g day:31  |g month:01 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2018.2800289  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |j 2018  |b 31  |c 01