Heteroscedastic Max-min Distance Analysis for Dimensionality Reduction

Max-min distance analysis (MMDA) performs dimensionality reduction by maximizing the minimum pairwise distance between classes in the latent subspace under the homoscedastic assumption, which can address the class separation problem caused by the Fisher criterion, but is incapable of tackling hetero...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - (2018) vom: 21. Mai
1. Verfasser: Su, Bing (VerfasserIn)
Weitere Verfasser: Ding, Xiaoqing, Liu, Changsong, Wu, Ying
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM286370727
003 DE-627
005 20240229161835.0
007 cr uuu---uuuuu
008 231225s2018 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2018.2836312  |2 doi 
028 5 2 |a pubmed24n1308.xml 
035 |a (DE-627)NLM286370727 
035 |a (NLM)29994529 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Su, Bing  |e verfasserin  |4 aut 
245 1 0 |a Heteroscedastic Max-min Distance Analysis for Dimensionality Reduction 
264 1 |c 2018 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 27.02.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a Max-min distance analysis (MMDA) performs dimensionality reduction by maximizing the minimum pairwise distance between classes in the latent subspace under the homoscedastic assumption, which can address the class separation problem caused by the Fisher criterion, but is incapable of tackling heteroscedastic data properly. In this paper, we propose two heteroscedastic MMDA (HMMDA) methods to employ the differences of class covariances. Whitened HMMDA (WHMMDA) extends MMDA by utilizing the Chernoff distance as the separability measure between classes in the whitened space. Orthogonal HMMDA (OHMMDA) incorporates the maximization of the minimal pairwise Chernoff distance and the minimization of class compactness into a trace quotient formulation with an orthogonal constraint of the transformation, which can be solved by bisection search. Two variants of OHMMDA further encode the margin information by using only neighboring samples to construct the intra-class and inter-class scatters. Experiments on several UCI datasets and two face databases demonstrate the effectiveness of the HMMDA methods 
650 4 |a Journal Article 
700 1 |a Ding, Xiaoqing  |e verfasserin  |4 aut 
700 1 |a Liu, Changsong  |e verfasserin  |4 aut 
700 1 |a Wu, Ying  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g (2018) vom: 21. Mai  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g year:2018  |g day:21  |g month:05 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2018.2836312  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |j 2018  |b 21  |c 05