Learning Depth from Single Images with Deep Neural Network Embedding Focal Length

Learning depth from a single image, as an important issue in scene understanding, has attracted a lot of attention in the past decade. The accuracy of the depth estimation has been improved from conditional Markov random fields, non-parametric methods, to deep convolutional neural networks most rece...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - (2018) vom: 17. Mai
1. Verfasser: He, Lei (VerfasserIn)
Weitere Verfasser: Wang, Guanghui, Hu, Zhanyi
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM286370689
003 DE-627
005 20250223192209.0
007 cr uuu---uuuuu
008 231225s2018 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2018.2832296  |2 doi 
028 5 2 |a pubmed25n0954.xml 
035 |a (DE-627)NLM286370689 
035 |a (NLM)29994526 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a He, Lei  |e verfasserin  |4 aut 
245 1 0 |a Learning Depth from Single Images with Deep Neural Network Embedding Focal Length 
264 1 |c 2018 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 27.02.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a Learning depth from a single image, as an important issue in scene understanding, has attracted a lot of attention in the past decade. The accuracy of the depth estimation has been improved from conditional Markov random fields, non-parametric methods, to deep convolutional neural networks most recently. However, there exist inherent ambiguities in recovering 3D from a single 2D image. In this paper, we first prove the ambiguity between the focal length and monocular depth learning, and verify the result using experiments, showing that the focal length has a great influence on accurate depth recovery. In order to learn monocular depth by embedding the focal length, we propose a method to generate synthetic varying-focal-length dataset from fixed-focal-length datasets, and a simple and effective method is implemented to fill the holes in the newly generated images. For the sake of accurate depth recovery, we propose a novel deep neural network to infer depth through effectively fusing the middle-level information on the fixed-focal-length dataset, which outperforms the state-of-the-art methods built on pretrained VGG. Furthermore, the newly generated varying-focallength dataset is taken as input to the proposed network in both learning and inference phases. Extensive experiments on the fixed- and varying-focal-length datasets demonstrate that the learned monocular depth with embedded focal length is significantly improved compared to that without embedding the focal length information 
650 4 |a Journal Article 
700 1 |a Wang, Guanghui  |e verfasserin  |4 aut 
700 1 |a Hu, Zhanyi  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g (2018) vom: 17. Mai  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g year:2018  |g day:17  |g month:05 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2018.2832296  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |j 2018  |b 17  |c 05