DeepDemosaicking : Adaptive Image Demosaicking via Multiple Deep Fully Convolutional Networks

Convolutional neural networks are currently the state-of-the-art solution for a wide range of image processing tasks. Their deep architecture extracts low and high-level features from images, thus, improving the model's performance. In this paper, we propose a method for image demosaicking base...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - (2018) vom: 07. Feb.
1. Verfasser: Tan, Daniel Stanley (VerfasserIn)
Weitere Verfasser: Chen, Wei-Yang, Hua, Kai-Lung
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM286370530
003 DE-627
005 20240229161835.0
007 cr uuu---uuuuu
008 231225s2018 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2018.2803341  |2 doi 
028 5 2 |a pubmed24n1308.xml 
035 |a (DE-627)NLM286370530 
035 |a (NLM)29994510 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Tan, Daniel Stanley  |e verfasserin  |4 aut 
245 1 0 |a DeepDemosaicking  |b Adaptive Image Demosaicking via Multiple Deep Fully Convolutional Networks 
264 1 |c 2018 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 27.02.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a Convolutional neural networks are currently the state-of-the-art solution for a wide range of image processing tasks. Their deep architecture extracts low and high-level features from images, thus, improving the model's performance. In this paper, we propose a method for image demosaicking based on deep convolutional neural networks. Demosaicking is the task of reproducing full color images from incomplete images formed from overlaid color filter arrays on image sensors found in digital cameras. Instead of producing the output image directly, the proposed method divides the demosaicking task into an initial demosaicking step and a refinement step. The initial step produces a rough demosaicked image containing unwanted color artifacts. The refinement step then reduces these color artifacts using deep residual estimation and multi-model fusion producing a higher quality image. Experimental results show that the proposed method outperforms several existing and state-of-the-art methods in terms of both subjective and objective evaluations 
650 4 |a Journal Article 
700 1 |a Chen, Wei-Yang  |e verfasserin  |4 aut 
700 1 |a Hua, Kai-Lung  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g (2018) vom: 07. Feb.  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g year:2018  |g day:07  |g month:02 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2018.2803341  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |j 2018  |b 07  |c 02