Bayesian Bistatic ISAR Imaging for Targets with Complex Motion under Low SNR Condition

This paper proposes a novel bistatic inverse synthetic aperture radar (ISAR) imaging algorithm for the target with complex motion under low signal to noise ratio (SNR) condition. Note the bistatic ISAR system generally suffers from a lower SNR than the monostatic one because of its non-mirror reflec...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - (2018) vom: 07. Feb.
1. Verfasser: Zhang, Shuanghui (VerfasserIn)
Weitere Verfasser: Liu, Yongxiang, Li, Xiang
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM286370514
003 DE-627
005 20240229161835.0
007 cr uuu---uuuuu
008 231225s2018 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2018.2803300  |2 doi 
028 5 2 |a pubmed24n1308.xml 
035 |a (DE-627)NLM286370514 
035 |a (NLM)29994508 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhang, Shuanghui  |e verfasserin  |4 aut 
245 1 0 |a Bayesian Bistatic ISAR Imaging for Targets with Complex Motion under Low SNR Condition 
264 1 |c 2018 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 27.02.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a This paper proposes a novel bistatic inverse synthetic aperture radar (ISAR) imaging algorithm for the target with complex motion under low signal to noise ratio (SNR) condition. Note the bistatic ISAR system generally suffers from a lower SNR than the monostatic one because of its non-mirror reflection geometry. A de-noising method, therefore, is proposed to improve SNR of range profiles, which accumulates the aligned range profiles non-coherently to obtain a window for noise suppression. Additionally, since the complex motion of target induces nonstationary Doppler, which is destructive to ISAR imaging, an optimal coherent processing interval (CPI) selection algorithm is further proposed to find out the interval where the Doppler is relatively stationary, so as to produce well-focused ISAR images. It utilizes the reassigned time-frequency (TF) method to obtain the high resolution instantaneous Doppler spectrum, and the minimum entropy criterion to select the optimal CPI, respectively. Note the selected CPI often contains too limited pulses to produce ISAR images with high resolution. A sparse aperture ISAR imaging method within the Bayesian framework is further proposed, which introduces the Laplacian scale mixture (LSM) model as the sparse prior, so as to reconstruct well-focused ISAR images with high resolution and low side lobes from the limited data. Compared with the traditional sparse Bayesian learning method, the proposed LSM based ISAR imaging performs superiorly on resolution improvement and noise reduction. Experimental results based on both simulated and measured data validate the effectiveness of the proposed algorithms 
650 4 |a Journal Article 
700 1 |a Liu, Yongxiang  |e verfasserin  |4 aut 
700 1 |a Li, Xiang  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g (2018) vom: 07. Feb.  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g year:2018  |g day:07  |g month:02 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2018.2803300  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |j 2018  |b 07  |c 02