Improving Shadow Suppression for Illumination Robust Face Recognition

2D face analysis techniques, such as face landmarking, face recognition and face verification, are reasonably dependent on illumination conditions which are usually uncontrolled and unpredictable in the real world. The current massive data-driven approach, e.g., deep learning-based face recognition,...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 41(2019), 3 vom: 12. März, Seite 611-624
1. Verfasser: Zhang, Wuming (VerfasserIn)
Weitere Verfasser: Zhao, Xi, Morvan, Jean-Marie, Chen, Liming
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM286370506
003 DE-627
005 20231225051542.0
007 cr uuu---uuuuu
008 231225s2019 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2018.2803179  |2 doi 
028 5 2 |a pubmed24n0954.xml 
035 |a (DE-627)NLM286370506 
035 |a (NLM)29994507 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhang, Wuming  |e verfasserin  |4 aut 
245 1 0 |a Improving Shadow Suppression for Illumination Robust Face Recognition 
264 1 |c 2019 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 20.11.2019 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a 2D face analysis techniques, such as face landmarking, face recognition and face verification, are reasonably dependent on illumination conditions which are usually uncontrolled and unpredictable in the real world. The current massive data-driven approach, e.g., deep learning-based face recognition, requires a huge amount of labeled training face data that hardly cover the infinite lighting variations that can be encountered in real-life applications. An illumination robust preprocessing method thus remains a very interesting but also a significant challenge in reliable face analysis. In this paper we propose a novel model driven approach to improve lighting normalization of face images. Specifically, we propose to build the underlying reflectance model which characterizes interactions between skin surface, lighting source and camera sensor, and elaborate the formation of face color appearance. The proposed illumination processing pipeline enables generation of the Chromaticity Intrinsic Image (CII) in a log chromaticity space which is robust to illumination variations. Moreover, as an advantage over most prevailing methods, a photo-realistic color face image is subsequently reconstructed, which eliminates a wide variety of shadows whilst retaining the color information and identity details. Experimental results under different scenarios and using various face databases show the effectiveness of the proposed approach in dealing with lighting variations, including both soft and hard shadows, in face recognition 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Zhao, Xi  |e verfasserin  |4 aut 
700 1 |a Morvan, Jean-Marie  |e verfasserin  |4 aut 
700 1 |a Chen, Liming  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 41(2019), 3 vom: 12. März, Seite 611-624  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:41  |g year:2019  |g number:3  |g day:12  |g month:03  |g pages:611-624 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2018.2803179  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 41  |j 2019  |e 3  |b 12  |c 03  |h 611-624