Recurrent Face Aging with Hierarchical AutoRegressive Memory

Modeling the aging process of human faces is important for cross-age face verification and recognition. In this paper, we propose a Recurrent Face Aging (RFA) framework which takes as input a single image and automatically outputs a series of aged faces. The hidden units in the RFA are connected aut...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 41(2019), 3 vom: 12. März, Seite 654-668
1. Verfasser: Wang, Wei (VerfasserIn)
Weitere Verfasser: Yan, Yan, Cui, Zhen, Feng, Jiashi, Yan, Shuicheng, Sebe, Nicu
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM286370484
003 DE-627
005 20250223192208.0
007 cr uuu---uuuuu
008 231225s2019 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2018.2803166  |2 doi 
028 5 2 |a pubmed25n0954.xml 
035 |a (DE-627)NLM286370484 
035 |a (NLM)29994505 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wang, Wei  |e verfasserin  |4 aut 
245 1 0 |a Recurrent Face Aging with Hierarchical AutoRegressive Memory 
264 1 |c 2019 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 20.11.2019 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Modeling the aging process of human faces is important for cross-age face verification and recognition. In this paper, we propose a Recurrent Face Aging (RFA) framework which takes as input a single image and automatically outputs a series of aged faces. The hidden units in the RFA are connected autoregressively allowing the framework to age the person by referring to the previous aged faces. Due to the lack of labeled face data of the same person captured in a long range of ages, traditional face aging models split the ages into discrete groups and learn a one-step face transformation for each pair of adjacent age groups. Since human face aging is a smooth progression, it is more appropriate to age the face by going through smooth transitional states. In this way, the intermediate aged faces between the age groups can be generated. Towards this target, we employ a recurrent neural network whose recurrent module is a hierarchical triple-layer gated recurrent unit which functions as an autoencoder. The bottom layer of the module encodes the input to a latent representation, and the top layer decodes the representation to a corresponding aged face. The experimental results demonstrate the effectiveness of our framework 
650 4 |a Journal Article 
700 1 |a Yan, Yan  |e verfasserin  |4 aut 
700 1 |a Cui, Zhen  |e verfasserin  |4 aut 
700 1 |a Feng, Jiashi  |e verfasserin  |4 aut 
700 1 |a Yan, Shuicheng  |e verfasserin  |4 aut 
700 1 |a Sebe, Nicu  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 41(2019), 3 vom: 12. März, Seite 654-668  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnas 
773 1 8 |g volume:41  |g year:2019  |g number:3  |g day:12  |g month:03  |g pages:654-668 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2018.2803166  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 41  |j 2019  |e 3  |b 12  |c 03  |h 654-668