Searching for Representative Modes on Hypergraphs for Robust Geometric Model Fitting

In this paper, we propose a simple and effective geometric model fitting method to fit and segment multi-structure data even in the presence of severe outliers. We cast the task of geometric model fitting as a representative mode-seeking problem on hypergraphs. Specifically, a hypergraph is first co...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 41(2019), 3 vom: 12. März, Seite 697-711
Auteur principal: Wang, Hanzi (Auteur)
Autres auteurs: Xiao, Guobao, Yan, Yan, Suter, David
Format: Article en ligne
Langue:English
Publié: 2019
Accès à la collection:IEEE transactions on pattern analysis and machine intelligence
Sujets:Journal Article
LEADER 01000caa a22002652 4500
001 NLM286370476
003 DE-627
005 20250223192208.0
007 cr uuu---uuuuu
008 231225s2019 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2018.2803173  |2 doi 
028 5 2 |a pubmed25n0954.xml 
035 |a (DE-627)NLM286370476 
035 |a (NLM)29994506 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wang, Hanzi  |e verfasserin  |4 aut 
245 1 0 |a Searching for Representative Modes on Hypergraphs for Robust Geometric Model Fitting 
264 1 |c 2019 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 20.11.2019 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a In this paper, we propose a simple and effective geometric model fitting method to fit and segment multi-structure data even in the presence of severe outliers. We cast the task of geometric model fitting as a representative mode-seeking problem on hypergraphs. Specifically, a hypergraph is first constructed, where the vertices represent model hypotheses and the hyperedges denote data points. The hypergraph involves higher-order similarities (instead of pairwise similarities used on a simple graph), and it can characterize complex relationships between model hypotheses and data points. In addition, we develop a hypergraph reduction technique to remove "insignificant" vertices while retaining as many "significant" vertices as possible in the hypergraph. Based on the simplified hypergraph, we then propose a novel mode-seeking algorithm to search for representative modes within reasonable time. Finally, the proposed mode-seeking algorithm detects modes according to two key elements, i.e., the weighting scores of vertices and the similarity analysis between vertices. Overall, the proposed fitting method is able to efficiently and effectively estimate the number and the parameters of model instances in the data simultaneously. Experimental results demonstrate that the proposed method achieves significant superiority over several state-of-the-art model fitting methods on both synthetic data and real images 
650 4 |a Journal Article 
700 1 |a Xiao, Guobao  |e verfasserin  |4 aut 
700 1 |a Yan, Yan  |e verfasserin  |4 aut 
700 1 |a Suter, David  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 41(2019), 3 vom: 12. März, Seite 697-711  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:41  |g year:2019  |g number:3  |g day:12  |g month:03  |g pages:697-711 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2018.2803173  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 41  |j 2019  |e 3  |b 12  |c 03  |h 697-711