Deep Metric Learning with BIER : Boosting Independent Embeddings Robustly

Learning similarity functions between image pairs with deep neural networks yields highly correlated activations of embeddings. In this work, we show how to improve the robustness of such embeddings by exploiting the independence within ensembles. To this end, we divide the last embedding layer of a...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 42(2020), 2 vom: 22. Feb., Seite 276-290
1. Verfasser: Opitz, Michael (VerfasserIn)
Weitere Verfasser: Waltner, Georg, Possegger, Horst, Bischof, Horst
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM286370085
003 DE-627
005 20231225051541.0
007 cr uuu---uuuuu
008 231225s2020 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2018.2848925  |2 doi 
028 5 2 |a pubmed24n0954.xml 
035 |a (DE-627)NLM286370085 
035 |a (NLM)29994466 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Opitz, Michael  |e verfasserin  |4 aut 
245 1 0 |a Deep Metric Learning with BIER  |b Boosting Independent Embeddings Robustly 
264 1 |c 2020 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 10.03.2020 
500 |a Date Revised 10.03.2020 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Learning similarity functions between image pairs with deep neural networks yields highly correlated activations of embeddings. In this work, we show how to improve the robustness of such embeddings by exploiting the independence within ensembles. To this end, we divide the last embedding layer of a deep network into an embedding ensemble and formulate the task of training this ensemble as an online gradient boosting problem. Each learner receives a reweighted training sample from the previous learners. Further, we propose two loss functions which increase the diversity in our ensemble. These loss functions can be applied either for weight initialization or during training. Together, our contributions leverage large embedding sizes more effectively by significantly reducing correlation of the embedding and consequently increase retrieval accuracy of the embedding. Our method works with any differentiable loss function and does not introduce any additional parameters during test time. We evaluate our metric learning method on image retrieval tasks and show that it improves over state-of-the-art methods on the CUB-200-2011, Cars-196, Stanford Online Products, In-Shop Clothes Retrieval and VehicleID datasets. Therefore, our findings suggest that by dividing deep networks at the end into several smaller and diverse networks, we can significantly reduce overfitting 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Waltner, Georg  |e verfasserin  |4 aut 
700 1 |a Possegger, Horst  |e verfasserin  |4 aut 
700 1 |a Bischof, Horst  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 42(2020), 2 vom: 22. Feb., Seite 276-290  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:42  |g year:2020  |g number:2  |g day:22  |g month:02  |g pages:276-290 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2018.2848925  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 42  |j 2020  |e 2  |b 22  |c 02  |h 276-290