Salient Object Detection with Recurrent Fully Convolutional Networks

Deep networks have been proved to encode high-level features with semantic meaning and delivered superior performance in salient object detection. In this paper, we take one step further by developing a new saliency detection method based on recurrent fully convolutional networks (RFCNs). Compared w...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 41(2019), 7 vom: 08. Juli, Seite 1734-1746
1. Verfasser: Wang, Linzhao (VerfasserIn)
Weitere Verfasser: Wang, Lijun, Lu, Huchuan, Zhang, Pingping, Ruan, Xiang
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM286367904
003 DE-627
005 20231225051538.0
007 cr uuu---uuuuu
008 231225s2019 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2018.2846598  |2 doi 
028 5 2 |a pubmed24n0954.xml 
035 |a (DE-627)NLM286367904 
035 |a (NLM)29994247 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wang, Linzhao  |e verfasserin  |4 aut 
245 1 0 |a Salient Object Detection with Recurrent Fully Convolutional Networks 
264 1 |c 2019 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 23.07.2019 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Deep networks have been proved to encode high-level features with semantic meaning and delivered superior performance in salient object detection. In this paper, we take one step further by developing a new saliency detection method based on recurrent fully convolutional networks (RFCNs). Compared with existing deep network based methods, the proposed network is able to incorpor- ate saliency prior knowledge for more accurate inference. In addition, the recurrent architecture enables our method to automatically learn to refine the saliency map by iteratively correcting its previous errors, yielding more reliable final predictions. To train such a netw- ork with numerous parameters, we propose a pre-training strategy using semantic segmentation data, which simultaneously leverages the strong supervision of segmentation tasks for effective training and enables the network to capture generic representations to chara- cterize category-agnostic objects for saliency detection. Extensive experimental evaluations demonstrate that the proposed method compares favorably against state-of-the-art saliency detection approaches. Additional validations are also performed to study the impact of the recurrent architecture and pre-training strategy on both saliency detection and semantic segmentation, which provides important knowledge for network design and training in the future research 
650 4 |a Journal Article 
700 1 |a Wang, Lijun  |e verfasserin  |4 aut 
700 1 |a Lu, Huchuan  |e verfasserin  |4 aut 
700 1 |a Zhang, Pingping  |e verfasserin  |4 aut 
700 1 |a Ruan, Xiang  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 41(2019), 7 vom: 08. Juli, Seite 1734-1746  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:41  |g year:2019  |g number:7  |g day:08  |g month:07  |g pages:1734-1746 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2018.2846598  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 41  |j 2019  |e 7  |b 08  |c 07  |h 1734-1746