Differential Geometry in Edge Detection : Accurate Estimation of Position, Orientation and Curvature

The vast majority of edge detection literature has aimed at improving edge recall and precision, with relatively few addressing the accuracy of edge orientation estimates which are often based on gradient. We show that first-order estimates of orientation can have significant error and this can be r...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 41(2019), 7 vom: 08. Juli, Seite 1573-1586
1. Verfasser: Kimia, Benjamin B (VerfasserIn)
Weitere Verfasser: Li, Xiaoyan, Guo, Yuliang, Tamrakar, Amir
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM286367882
003 DE-627
005 20231225051538.0
007 cr uuu---uuuuu
008 231225s2019 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2018.2846268  |2 doi 
028 5 2 |a pubmed24n0954.xml 
035 |a (DE-627)NLM286367882 
035 |a (NLM)29994245 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Kimia, Benjamin B  |e verfasserin  |4 aut 
245 1 0 |a Differential Geometry in Edge Detection  |b Accurate Estimation of Position, Orientation and Curvature 
264 1 |c 2019 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 23.07.2019 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a The vast majority of edge detection literature has aimed at improving edge recall and precision, with relatively few addressing the accuracy of edge orientation estimates which are often based on gradient. We show that first-order estimates of orientation can have significant error and this can be remedied by employing Third-Order estimates. This paper aims at estimating differential geometry attributes of an edge, namely, localization, orientation, and curvature, as well as edge topology, and develop robust numerical techniques in gray-scale and color images, applicable to a variety of popular edge detectors, such as gradient-based, gPb and SE. Second, a combinatorial model of edge grouping in a small neighborhood is developed to capture all geometrically consistent grouping called curvels, which establish: (i) edge topology in the form of potential links between an edge and other edges; (ii) an accurate curvature estimate for each possible grouping, whose performance is comparable to methods which use global and multi-scale methods; (iii) a more accurate localization of an edge. These have been evaluated using four distinct methodologies (i) traditional human annotated datasets; (ii) using coherence measure; (iii) stability analysis under visual perturbation, and (iv) utilitarian evaluation, and show meaningful improvements 
650 4 |a Journal Article 
700 1 |a Li, Xiaoyan  |e verfasserin  |4 aut 
700 1 |a Guo, Yuliang  |e verfasserin  |4 aut 
700 1 |a Tamrakar, Amir  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 41(2019), 7 vom: 08. Juli, Seite 1573-1586  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:41  |g year:2019  |g number:7  |g day:08  |g month:07  |g pages:1573-1586 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2018.2846268  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 41  |j 2019  |e 7  |b 08  |c 07  |h 1573-1586