Dynamic Match Kernel With Deep Convolutional Features for Image Retrieval

For image retrieval methods based on bag of visual words, much attention has been paid to enhancing the discriminative powers of the local features. Although retrieved images are usually similar to a query in minutiae, they may be significantly different from a semantic perspective, which can be eff...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 27(2018), 11 vom: 08. Nov., Seite 5288-5302
1. Verfasser: Yang, Jufeng (VerfasserIn)
Weitere Verfasser: Liang, Jie, Shen, Hui, Wang, Kai, Rosin, Paul L, Yang, Ming-Hsuan
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM286367572
003 DE-627
005 20231225051538.0
007 cr uuu---uuuuu
008 231225s2018 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2018.2845136  |2 doi 
028 5 2 |a pubmed24n0954.xml 
035 |a (DE-627)NLM286367572 
035 |a (NLM)29994213 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Yang, Jufeng  |e verfasserin  |4 aut 
245 1 0 |a Dynamic Match Kernel With Deep Convolutional Features for Image Retrieval 
264 1 |c 2018 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 31.07.2018 
500 |a Date Revised 31.07.2018 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a For image retrieval methods based on bag of visual words, much attention has been paid to enhancing the discriminative powers of the local features. Although retrieved images are usually similar to a query in minutiae, they may be significantly different from a semantic perspective, which can be effectively distinguished by convolutional neural networks (CNN). Such images should not be considered as relevant pairs. To tackle this problem, we propose to construct a dynamic match kernel by adaptively calculating the matching thresholds between query and candidate images based on the pairwise distance among deep CNN features. In contrast to the typical static match kernel which is independent to the global appearance of retrieved images, the dynamic one leverages the semantical similarity as a constraint for determining the matches. Accordingly, we propose a semantic-constrained retrieval framework by incorporating the dynamic match kernel, which focuses on matched patches between relevant images and filters out the ones for irrelevant pairs. Furthermore, we demonstrate that the proposed kernel complements recent methods, such as hamming embedding, multiple assignment, local descriptors aggregation, and graph-based re-ranking, while it outperforms the static one under various settings on off-the-shelf evaluation metrics. We also propose to evaluate the matched patches both quantitatively and qualitatively. Extensive experiments on five benchmark data sets and large-scale distractors validate the merits of the proposed method against the state-of-the-art methods for image retrieval 
650 4 |a Journal Article 
700 1 |a Liang, Jie  |e verfasserin  |4 aut 
700 1 |a Shen, Hui  |e verfasserin  |4 aut 
700 1 |a Wang, Kai  |e verfasserin  |4 aut 
700 1 |a Rosin, Paul L  |e verfasserin  |4 aut 
700 1 |a Yang, Ming-Hsuan  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 27(2018), 11 vom: 08. Nov., Seite 5288-5302  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:27  |g year:2018  |g number:11  |g day:08  |g month:11  |g pages:5288-5302 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2018.2845136  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 27  |j 2018  |e 11  |b 08  |c 11  |h 5288-5302