Embedding Visual Hierarchy with Deep Networks for Large-Scale Visual Recognition

In this paper, a layer-wise mixture model (LMM) is developed to support hierarchical visual recognition, where a Bayesian approach is used to automatically adapt the visual hierarchy to the progressive improvements of the deep network along the time. Our LMM algorithm can provide an end-to-end appro...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - (2018) vom: 07. Juni
1. Verfasser: Zhao, Tianyi (VerfasserIn)
Weitere Verfasser: Zhang, Baopeng, He, Ming, Zhanga, Wei, Zhou, Ning, Yu, Jun, Fan, Jianping
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM286367548
003 DE-627
005 20240229161833.0
007 cr uuu---uuuuu
008 231225s2018 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2018.2845118  |2 doi 
028 5 2 |a pubmed24n1308.xml 
035 |a (DE-627)NLM286367548 
035 |a (NLM)29994211 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhao, Tianyi  |e verfasserin  |4 aut 
245 1 0 |a Embedding Visual Hierarchy with Deep Networks for Large-Scale Visual Recognition 
264 1 |c 2018 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 27.02.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a In this paper, a layer-wise mixture model (LMM) is developed to support hierarchical visual recognition, where a Bayesian approach is used to automatically adapt the visual hierarchy to the progressive improvements of the deep network along the time. Our LMM algorithm can provide an end-to-end approach for jointly learning: (a) the deep network for achieving more discriminative deep representations for object classes and their inter-class visual similarities; (b) the tree classifier for recognizing large numbers of object classes hierarchically; and (c) the visual hierarchy adaptation for achieving more accurate assignment and organization of large numbers of object classes. By learning the tree classifier, the deep network and the visual hierarchy adaptation jointly in an end-to-end manner, our LMM algorithm can achieve higher accuracy rates on hierarchical visual recognition. Our experiments are carried on ImageNet1K and ImageNet10K image sets, which have demonstrated that our LMM algorithm can achieve very competitive results on the accuracy rates as compared with the baseline methods 
650 4 |a Journal Article 
700 1 |a Zhang, Baopeng  |e verfasserin  |4 aut 
700 1 |a He, Ming  |e verfasserin  |4 aut 
700 1 |a Zhanga, Wei  |e verfasserin  |4 aut 
700 1 |a Zhou, Ning  |e verfasserin  |4 aut 
700 1 |a Yu, Jun  |e verfasserin  |4 aut 
700 1 |a Fan, Jianping  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g (2018) vom: 07. Juni  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g year:2018  |g day:07  |g month:06 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2018.2845118  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |j 2018  |b 07  |c 06