lp-Box ADMM : A Versatile Framework for Integer Programming

This paper revisits the integer programming (IP) problem, which plays a fundamental role in many computer vision and machine learning applications. The literature abounds with many seminal works that address this problem, some focusing on continuous approaches (e.g., linear program relaxation), whil...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 41(2019), 7 vom: 18. Juli, Seite 1695-1708
1. Verfasser: Wu, Baoyuan (VerfasserIn)
Weitere Verfasser: Ghanem, Bernard
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM286367394
003 DE-627
005 20231225051538.0
007 cr uuu---uuuuu
008 231225s2019 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2018.2845842  |2 doi 
028 5 2 |a pubmed24n0954.xml 
035 |a (DE-627)NLM286367394 
035 |a (NLM)29994196 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wu, Baoyuan  |e verfasserin  |4 aut 
245 1 0 |a lp-Box ADMM  |b A Versatile Framework for Integer Programming 
264 1 |c 2019 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 23.07.2019 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a This paper revisits the integer programming (IP) problem, which plays a fundamental role in many computer vision and machine learning applications. The literature abounds with many seminal works that address this problem, some focusing on continuous approaches (e.g., linear program relaxation), while others on discrete ones (e.g., min-cut). However, since many of these methods are designed to solve specific IP forms, they cannot adequately satisfy the simultaneous requirements of accuracy, feasibility, and scalability. To this end, we propose a novel and versatile framework called $\ell _p$ℓp-box ADMM, which is based on two main ideas. (1) The discrete constraint is equivalently replaced by the intersection of a box and an $\ell _p$ℓp-norm sphere. (2) We infuse this equivalence into the Alternating Direction Method of Multipliers (ADMM) framework to handle the continuous constraints separately and to harness its attractive properties. More importantly, the ADMM update steps can lead to manageable sub-problems in the continuous domain. To demonstrate its efficacy, we apply it to an optimization form that occurs often in computer vision and machine learning, namely binary quadratic programming (BQP). In this case, the ADMM steps are simple, computationally efficient. Moreover, we present the theoretic analysis about the global convergence of the $\ell _p$ℓp-box ADMM through adding a perturbation with the sufficiently small factor $\epsilon$ε to the original IP problem. Specifically, the globally converged solution generated by $\ell _p$ℓp-box ADMM for the perturbed IP problem will be close to the stationary and feasible point of the original IP problem within $O(\epsilon)$O(ε). We demonstrate the applicability of $\ell _p$ℓp-box ADMM on three important applications: MRF energy minimization, graph matching, and clustering. Results clearly show that it significantly outperforms existing generic IP solvers both in runtime and objective. It also achieves very competitive performance to state-of-the-art methods designed specifically for these applications 
650 4 |a Journal Article 
700 1 |a Ghanem, Bernard  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 41(2019), 7 vom: 18. Juli, Seite 1695-1708  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:41  |g year:2019  |g number:7  |g day:18  |g month:07  |g pages:1695-1708 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2018.2845842  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 41  |j 2019  |e 7  |b 18  |c 07  |h 1695-1708