Density-Preserving Hierarchical EM Algorithm : Simplifying Gaussian Mixture Models for Approximate Inference

We propose an algorithm for simplifying a finite mixture model into a reduced mixture model with fewer mixture components. The reduced model is obtained by maximizing a variational lower bound of the expected log-likelihood of a set of virtual samples. We develop three applications for our mixture s...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 41(2019), 6 vom: 18. Juni, Seite 1323-1337
1. Verfasser: Lei Yu (VerfasserIn)
Weitere Verfasser: Tianyu Yang, Chan, Antoni B
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM286367378
003 DE-627
005 20250223192137.0
007 cr uuu---uuuuu
008 231225s2019 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2018.2845371  |2 doi 
028 5 2 |a pubmed25n0954.xml 
035 |a (DE-627)NLM286367378 
035 |a (NLM)29994194 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Lei Yu  |e verfasserin  |4 aut 
245 1 0 |a Density-Preserving Hierarchical EM Algorithm  |b Simplifying Gaussian Mixture Models for Approximate Inference 
264 1 |c 2019 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 20.11.2019 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a We propose an algorithm for simplifying a finite mixture model into a reduced mixture model with fewer mixture components. The reduced model is obtained by maximizing a variational lower bound of the expected log-likelihood of a set of virtual samples. We develop three applications for our mixture simplification algorithm: recursive Bayesian filtering using Gaussian mixture model posteriors, KDE mixture reduction, and belief propagation without sampling. For recursive Bayesian filtering, we propose an efficient algorithm for approximating an arbitrary likelihood function as a sum of scaled Gaussian. Experiments on synthetic data, human location modeling, visual tracking, and vehicle self-localization show that our algorithm can be widely used for probabilistic data analysis, and is more accurate than other mixture simplification methods 
650 4 |a Journal Article 
700 1 |a Tianyu Yang  |e verfasserin  |4 aut 
700 1 |a Chan, Antoni B  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 41(2019), 6 vom: 18. Juni, Seite 1323-1337  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:41  |g year:2019  |g number:6  |g day:18  |g month:06  |g pages:1323-1337 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2018.2845371  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 41  |j 2019  |e 6  |b 18  |c 06  |h 1323-1337