Deep-Learning-Assisted Volume Visualization

Designing volume visualizations showing various structures of interest is critical to the exploratory analysis of volumetric data. The last few years have witnessed dramatic advances in the use of convolutional neural networks for identification of objects in large image collections. Whereas such ma...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - 25(2019), 2 vom: 15. Feb., Seite 1378-1391
1. Verfasser: Cheng, Hsueh-Chien (VerfasserIn)
Weitere Verfasser: Cardone, Antonio, Jain, Somay, Krokos, Eric, Narayan, Kedar, Subramaniam, Sriram, Varshney, Amitabh
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM286367254
003 DE-627
005 20240615232534.0
007 cr uuu---uuuuu
008 231225s2019 xx |||||o 00| ||eng c
024 7 |a 10.1109/TVCG.2018.2796085  |2 doi 
028 5 2 |a pubmed24n1441.xml 
035 |a (DE-627)NLM286367254 
035 |a (NLM)29994182 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Cheng, Hsueh-Chien  |e verfasserin  |4 aut 
245 1 0 |a Deep-Learning-Assisted Volume Visualization 
264 1 |c 2019 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 15.06.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Designing volume visualizations showing various structures of interest is critical to the exploratory analysis of volumetric data. The last few years have witnessed dramatic advances in the use of convolutional neural networks for identification of objects in large image collections. Whereas such machine learning methods have shown superior performance in a number of applications, their direct use in volume visualization has not yet been explored. In this paper, we present a deep-learning-assisted volume visualization to depict complex structures, which are otherwise challenging for conventional approaches. A significant challenge in designing volume visualizations based on the high-dimensional deep features lies in efficiently handling the immense amount of information that deep-learning methods provide. In this paper, we present a new technique that uses spectral methods to facilitate user interactions with high-dimensional features. We also present a new deep-learning-assisted technique for hierarchically exploring a volumetric dataset. We have validated our approach on two electron microscopy volumes and one magnetic resonance imaging dataset 
650 4 |a Journal Article 
700 1 |a Cardone, Antonio  |e verfasserin  |4 aut 
700 1 |a Jain, Somay  |e verfasserin  |4 aut 
700 1 |a Krokos, Eric  |e verfasserin  |4 aut 
700 1 |a Narayan, Kedar  |e verfasserin  |4 aut 
700 1 |a Subramaniam, Sriram  |e verfasserin  |4 aut 
700 1 |a Varshney, Amitabh  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1996  |g 25(2019), 2 vom: 15. Feb., Seite 1378-1391  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnns 
773 1 8 |g volume:25  |g year:2019  |g number:2  |g day:15  |g month:02  |g pages:1378-1391 
856 4 0 |u http://dx.doi.org/10.1109/TVCG.2018.2796085  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 25  |j 2019  |e 2  |b 15  |c 02  |h 1378-1391