Metric Learning for Multi-Output Tasks

Multi-output learning with the task of simultaneously predicting multiple outputs for an input has increasingly attracted interest from researchers due to its wide application. The k nearest neighbor ([Formula: see text]) algorithm is one of the most popular frameworks for handling multi-output prob...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 41(2019), 2 vom: 09. Feb., Seite 408-422
Auteur principal: Liu, Weiwei (Auteur)
Autres auteurs: Xu, Donna, Tsang, Ivor W, Zhang, Wenjie
Format: Article en ligne
Langue:English
Publié: 2019
Accès à la collection:IEEE transactions on pattern analysis and machine intelligence
Sujets:Journal Article
LEADER 01000caa a22002652 4500
001 NLM286367203
003 DE-627
005 20250223192136.0
007 cr uuu---uuuuu
008 231225s2019 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2018.2794976  |2 doi 
028 5 2 |a pubmed25n0954.xml 
035 |a (DE-627)NLM286367203 
035 |a (NLM)29994178 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Liu, Weiwei  |e verfasserin  |4 aut 
245 1 0 |a Metric Learning for Multi-Output Tasks 
264 1 |c 2019 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 20.11.2019 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Multi-output learning with the task of simultaneously predicting multiple outputs for an input has increasingly attracted interest from researchers due to its wide application. The k nearest neighbor ([Formula: see text]) algorithm is one of the most popular frameworks for handling multi-output problems. The performance of [Formula: see text] depends crucially on the metric used to compute the distance between different instances. However, our experiment results show that the existing advanced metric learning technique cannot provide an appropriate distance metric for multi-output tasks. This paper systematically studies how to efficiently learn an appropriate distance metric for multi-output problems with provable guarantee. In particular, we present a novel large margin metric learning paradigm for multi-output tasks, which projects both the input and output into the same embedding space and then learns a distance metric to discover output dependency such that instances with very different multiple outputs will be moved far away. Several strategies are then proposed to speed up the training and testing time. Moreover, we study the generalization error bound of our method for three learning tasks, which shows that our method converges to the optimal solutions. Experiments on three multi-output learning tasks (multi-label classification, multi-target regression, and multi-concept retrieval) validate the effectiveness and scalability of the proposed method 
650 4 |a Journal Article 
700 1 |a Xu, Donna  |e verfasserin  |4 aut 
700 1 |a Tsang, Ivor W  |e verfasserin  |4 aut 
700 1 |a Zhang, Wenjie  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 41(2019), 2 vom: 09. Feb., Seite 408-422  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:41  |g year:2019  |g number:2  |g day:09  |g month:02  |g pages:408-422 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2018.2794976  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 41  |j 2019  |e 2  |b 09  |c 02  |h 408-422