Information Dropout : Learning Optimal Representations Through Noisy Computation

The cross-entropy loss commonly used in deep learning is closely related to the defining properties of optimal representations, but does not enforce some of the key properties. We show that this can be solved by adding a regularization term, which is in turn related to injecting multiplicative noise...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 40(2018), 12 vom: 20. Dez., Seite 2897-2905
1. Verfasser: Achille, Alessandro (VerfasserIn)
Weitere Verfasser: Soatto, Stefano
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, U.S. Gov't, Non-P.H.S.
LEADER 01000caa a22002652c 4500
001 NLM286367092
003 DE-627
005 20250223192135.0
007 cr uuu---uuuuu
008 231225s2018 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2017.2784440  |2 doi 
028 5 2 |a pubmed25n0954.xml 
035 |a (DE-627)NLM286367092 
035 |a (NLM)29994167 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Achille, Alessandro  |e verfasserin  |4 aut 
245 1 0 |a Information Dropout  |b Learning Optimal Representations Through Noisy Computation 
264 1 |c 2018 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 20.11.2019 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a The cross-entropy loss commonly used in deep learning is closely related to the defining properties of optimal representations, but does not enforce some of the key properties. We show that this can be solved by adding a regularization term, which is in turn related to injecting multiplicative noise in the activations of a Deep Neural Network, a special case of which is the common practice of dropout. We show that our regularized loss function can be efficiently minimized using Information Dropout, a generalization of dropout rooted in information theoretic principles that automatically adapts to the data and can better exploit architectures of limited capacity. When the task is the reconstruction of the input, we show that our loss function yields a Variational Autoencoder as a special case, thus providing a link between representation learning, information theory and variational inference. Finally, we prove that we can promote the creation of optimal disentangled representations simply by enforcing a factorized prior, a fact that has been observed empirically in recent work. Our experiments validate the theoretical intuitions behind our method, and we find that Information Dropout achieves a comparable or better generalization performance than binary dropout, especially on smaller models, since it can automatically adapt the noise to the structure of the network, as well as to the test sample 
650 4 |a Journal Article 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
700 1 |a Soatto, Stefano  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 40(2018), 12 vom: 20. Dez., Seite 2897-2905  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnas 
773 1 8 |g volume:40  |g year:2018  |g number:12  |g day:20  |g month:12  |g pages:2897-2905 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2017.2784440  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 40  |j 2018  |e 12  |b 20  |c 12  |h 2897-2905