Unified Mathematical Model for Multilayer-Multiframe Compressive Light Field Displays Using LCDs
We propose a unified mathematical model for multilayer-multiframe compressive light field displays that supports both attenuation-based and polarization-based architectures. We show that the light field decomposition of such a display can be cast as a bound constrained nonlinear matrix optimization...
Publié dans: | IEEE transactions on visualization and computer graphics. - 1996. - 25(2019), 3 vom: 20. März, Seite 1603-1614 |
---|---|
Auteur principal: | |
Autres auteurs: | , , |
Format: | Article en ligne |
Langue: | English |
Publié: |
2019
|
Accès à la collection: | IEEE transactions on visualization and computer graphics |
Sujets: | Journal Article |
Résumé: | We propose a unified mathematical model for multilayer-multiframe compressive light field displays that supports both attenuation-based and polarization-based architectures. We show that the light field decomposition of such a display can be cast as a bound constrained nonlinear matrix optimization problem. Efficient light field decomposition algorithms are developed using the limited-memory BFGS (L-BFGS) method for automultiscopic displays with high resolution and high image fidelity. In addition, this framework is the first to support multilayer polarization-based compressive light field displays with time multiplexing. This new architecture significantly reduces artifacts compared with attenuation-based multilayer-multiframe displays; thus, it can allow the requirements regarding the number of layers or the refresh rate to be relaxed. We verify the proposed methods by constructing two 3-layer prototypes using high-speed LCDs, one based on the attenuation architecture and one based on the polarization architecture. Moreover, an efficient CUDA-based program is implemented. Our displays can produce images with higher spatial resolution with thinner form factors compared with traditional automultiscopic displays in both simulations and experiments |
---|---|
Description: | Date Revised 20.11.2019 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1941-0506 |
DOI: | 10.1109/TVCG.2018.2810279 |