Minimizing Reconstruction Bias Hashing via Joint Projection Learning and Quantization

Hashing, a widely-studied solution to the approximate nearest neighbor (ANN) search, aims to map data points in the high-dimensional Euclidean space to the low-dimensional Hamming space while preserving the similarity between original points. As directly learning binary codes can be NP-hard due to d...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - (2018) vom: 21. März
1. Verfasser: Duan, Ling-Yu (VerfasserIn)
Weitere Verfasser: Wu, Yuwei, Huang, Yicheng, Wang, Zhe, Yuan, Junsong, Gao, Wen
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM286366932
003 DE-627
005 20240229161832.0
007 cr uuu---uuuuu
008 231225s2018 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2018.2818008  |2 doi 
028 5 2 |a pubmed24n1308.xml 
035 |a (DE-627)NLM286366932 
035 |a (NLM)29994150 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Duan, Ling-Yu  |e verfasserin  |4 aut 
245 1 0 |a Minimizing Reconstruction Bias Hashing via Joint Projection Learning and Quantization 
264 1 |c 2018 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 27.02.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a Hashing, a widely-studied solution to the approximate nearest neighbor (ANN) search, aims to map data points in the high-dimensional Euclidean space to the low-dimensional Hamming space while preserving the similarity between original points. As directly learning binary codes can be NP-hard due to discrete constraints, a two-stage scheme, namely "projection and quantization", has already become a standard paradigm for learning similarity-preserving hash codes. However, most existing hashing methods typically separate these two stages and thus fail to investigate complementary effects of both stages. In this paper, we systematically study the relationship between "projection and quantization", and propose a novel minimal reconstruction bias hashing (MRH) method to learn compact binary codes, in which the projection learning and quantization optimizing are jointly performed. By introducing a lower bound analysis, we design an effective ternary search algorithm to solve the corresponding optimization problem. Furthermore, we conduct some insightful discussions on the proposed MRH approach, including the theoretical proof, and computational complexity. Distinct from previous works, MRH can adaptively adjust the projection dimensionality to balance the information loss between projection and quantization. The proposed framework not only provides a unique perspective to view traditional hashing methods but also evokes some other researches, e.g., guiding the design of the loss functions in deep networks. Extensive experiment results have shown that the proposed MRH significantly outperforms a variety of state-of-the-art methods over eight widely used benchmarks 
650 4 |a Journal Article 
700 1 |a Wu, Yuwei  |e verfasserin  |4 aut 
700 1 |a Huang, Yicheng  |e verfasserin  |4 aut 
700 1 |a Wang, Zhe  |e verfasserin  |4 aut 
700 1 |a Yuan, Junsong  |e verfasserin  |4 aut 
700 1 |a Gao, Wen  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g (2018) vom: 21. März  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g year:2018  |g day:21  |g month:03 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2018.2818008  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |j 2018  |b 21  |c 03