Detecting 3D Points of Interest Using Multiple Features and Stacked Auto-encoder

Considering the fact that points of interest on 3D shapes can be discriminated from a geometric perspective, it is reasonable to map the geometric signature of a point $p$p to a probability value encoding to what degree $p$p is a point of interest, especially for a specific class of 3D shapes. Based...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - 25(2019), 8 vom: 18. Aug., Seite 2583-2596
1. Verfasser: Shu, Zhenyu (VerfasserIn)
Weitere Verfasser: Xin, Shiqing, Xu, Xin, Liu, Ligang, Kavan, Ladislav
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM286366614
003 DE-627
005 20231225051537.0
007 cr uuu---uuuuu
008 231225s2019 xx |||||o 00| ||eng c
024 7 |a 10.1109/TVCG.2018.2848628  |2 doi 
028 5 2 |a pubmed24n0954.xml 
035 |a (DE-627)NLM286366614 
035 |a (NLM)29994118 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Shu, Zhenyu  |e verfasserin  |4 aut 
245 1 0 |a Detecting 3D Points of Interest Using Multiple Features and Stacked Auto-encoder 
264 1 |c 2019 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 23.07.2019 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Considering the fact that points of interest on 3D shapes can be discriminated from a geometric perspective, it is reasonable to map the geometric signature of a point $p$p to a probability value encoding to what degree $p$p is a point of interest, especially for a specific class of 3D shapes. Based on the observation, we propose a three-phase algorithm for learning and predicting points of interest on 3D shapes by using multiple feature descriptors. Our algorithm requires two separate deep neural networks (stacked auto-encoders) to accomplish the task. During the first phase, we predict the membership of the given 3D shape according to a set of geometric descriptors using a deep neural network. After that, we train the other deep neural network to predict a probability distribution defined on the surface representing the possibility of a point being a point of interest. Finally, we use a manifold clustering technique to extract a set of points of interest as the output. Experimental results show superior detection performance of the proposed method over the previous state-of-the-art approaches 
650 4 |a Journal Article 
700 1 |a Xin, Shiqing  |e verfasserin  |4 aut 
700 1 |a Xu, Xin  |e verfasserin  |4 aut 
700 1 |a Liu, Ligang  |e verfasserin  |4 aut 
700 1 |a Kavan, Ladislav  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1996  |g 25(2019), 8 vom: 18. Aug., Seite 2583-2596  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnns 
773 1 8 |g volume:25  |g year:2019  |g number:8  |g day:18  |g month:08  |g pages:2583-2596 
856 4 0 |u http://dx.doi.org/10.1109/TVCG.2018.2848628  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 25  |j 2019  |e 8  |b 18  |c 08  |h 2583-2596