Structured AutoEncoders for Subspace Clustering

Existing subspace clustering methods typically employ shallow models to estimate underlying subspaces of unlabeled data points and cluster them into corresponding groups. However, due to the limited representative capacity of the employed shallow models, those methods may fail in handling realistic...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - (2018) vom: 18. Juni
1. Verfasser: Peng, Xi (VerfasserIn)
Weitere Verfasser: Feng, Jiashi, Xiao, Shijie, Yau, Wei-Yun, Zhou, Joey Tianyi, Yang, Songfan
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM286366576
003 DE-627
005 20240229161832.0
007 cr uuu---uuuuu
008 231225s2018 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2018.2848470  |2 doi 
028 5 2 |a pubmed24n1308.xml 
035 |a (DE-627)NLM286366576 
035 |a (NLM)29994115 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Peng, Xi  |e verfasserin  |4 aut 
245 1 0 |a Structured AutoEncoders for Subspace Clustering 
264 1 |c 2018 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 27.02.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a Existing subspace clustering methods typically employ shallow models to estimate underlying subspaces of unlabeled data points and cluster them into corresponding groups. However, due to the limited representative capacity of the employed shallow models, those methods may fail in handling realistic data without the linear subspace structure. To address this issue, we propose a novel subspace clustering approach by introducing a new deep model-Structured AutoEncoder (StructAE). The StructAE learns a set of explicit transformations to progressively map input data points into nonlinear latent spaces while preserving the local and global subspace structure. In particular, to preserve local structure, the StructAE learns representations for each data point by minimizing reconstruction error w.r.t. itself. To preserve global structure, the StructAE incorporates a prior structured information by encouraging the learned representation to preserve specified reconstruction patterns over the entire data set. To the best of our knowledge, StructAE is one of first deep subspace clustering approaches. Extensive experiments show that the proposed StructAE significantly outperforms 15 state-of-the-art subspace clustering approaches in terms of five evaluation metrics 
650 4 |a Journal Article 
700 1 |a Feng, Jiashi  |e verfasserin  |4 aut 
700 1 |a Xiao, Shijie  |e verfasserin  |4 aut 
700 1 |a Yau, Wei-Yun  |e verfasserin  |4 aut 
700 1 |a Zhou, Joey Tianyi  |e verfasserin  |4 aut 
700 1 |a Yang, Songfan  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g (2018) vom: 18. Juni  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g year:2018  |g day:18  |g month:06 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2018.2848470  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |j 2018  |b 18  |c 06