A Fusion Framework for Camouflaged Moving Foreground Detection in the Wavelet Domain

Detecting camouflaged moving foreground objects has been known to be difficult due to the similarity between the foreground objects and the background. Conventional methods cannot distinguish the foreground from background due to the small differences between them and thus suffer from underdetection...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - (2018) vom: 20. Apr.
1. Verfasser: Li, Shuai (VerfasserIn)
Weitere Verfasser: Florencio, Dinei, Li, Wanqing, Zhao, Yaqin, Cook, Chris
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM286364530
003 DE-627
005 20240229161830.0
007 cr uuu---uuuuu
008 231225s2018 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2018.2828329  |2 doi 
028 5 2 |a pubmed24n1308.xml 
035 |a (DE-627)NLM286364530 
035 |a (NLM)29993911 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Li, Shuai  |e verfasserin  |4 aut 
245 1 2 |a A Fusion Framework for Camouflaged Moving Foreground Detection in the Wavelet Domain 
264 1 |c 2018 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 27.02.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a Detecting camouflaged moving foreground objects has been known to be difficult due to the similarity between the foreground objects and the background. Conventional methods cannot distinguish the foreground from background due to the small differences between them and thus suffer from underdetection of the camouflaged foreground objects. In this paper, we present a fusion framework to address this problem in the wavelet domain. We first show that the small differences in the image domain can be highlighted in certain wavelet bands. Then the likelihood of each wavelet coefficient being foreground is estimated by formulating foreground and background models for each wavelet band. The proposed framework effectively aggregates the likelihoods from different wavelet bands based on the characteristics of the wavelet transform. Experimental results demonstrated that the proposed method significantly outperformed existing methods in detecting camouflaged foreground objects. Specifically, the average F-measure for the proposed algorithm was 0.87, compared to 0.71 to 0.8 for the other stateof- the-art methods 
650 4 |a Journal Article 
700 1 |a Florencio, Dinei  |e verfasserin  |4 aut 
700 1 |a Li, Wanqing  |e verfasserin  |4 aut 
700 1 |a Zhao, Yaqin  |e verfasserin  |4 aut 
700 1 |a Cook, Chris  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g (2018) vom: 20. Apr.  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g year:2018  |g day:20  |g month:04 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2018.2828329  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |j 2018  |b 20  |c 04