Deep Mixture of Diverse Experts for Large-Scale Visual Recognition

In this paper, a deep mixture of diverse experts algorithm is developed to achieve more efficient learning of a huge (mixture) network for large-scale visual recognition application. First, a two-layer ontology is constructed to assign large numbers of atomic object classes into a set of task groups...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 41(2019), 5 vom: 08. Mai, Seite 1072-1087
1. Verfasser: Zhao, Tianyi (VerfasserIn)
Weitere Verfasser: Chen, Qiuyu, Kuang, Zhenzhong, Yu, Jun, Zhang, Wei, Fan, Jianping
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM286364522
003 DE-627
005 20231225051534.0
007 cr uuu---uuuuu
008 231225s2019 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2018.2828821  |2 doi 
028 5 2 |a pubmed24n0954.xml 
035 |a (DE-627)NLM286364522 
035 |a (NLM)29993909 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhao, Tianyi  |e verfasserin  |4 aut 
245 1 0 |a Deep Mixture of Diverse Experts for Large-Scale Visual Recognition 
264 1 |c 2019 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 20.11.2019 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a In this paper, a deep mixture of diverse experts algorithm is developed to achieve more efficient learning of a huge (mixture) network for large-scale visual recognition application. First, a two-layer ontology is constructed to assign large numbers of atomic object classes into a set of task groups according to the similarities of their learning complexities, where certain degrees of inter-group task overlapping are allowed to enable sufficient inter-group message passing. Second, one particular base deep CNNs with M+1 outputs is learned for each task group to recognize its M atomic object classes and identify one special class of "not-in-group", where the network structure (numbers of layers and units in each layer) of the well-designed deep CNNs (such as AlexNet, VGG, GoogleNet, ResNet) is directly used to configure such base deep CNNs. For enhancing the separability of the atomic object classes in the same task group, two approaches are developed to learn more discriminative base deep CNNs: (a) our deep multi-task learning algorithm that can effectively exploit the inter-class visual similarities; (b) our two-layer network cascade approach that can improve the accuracy rates for the hard object classes at certain degrees while effectively maintaining the high accuracy rates for the easy ones. Finally, all these complementary base deep CNNs with diverse but overlapped outputs are seamlessly combined to generate a mixture network with larger outputs for recognizing tens of thousands of atomic object classes. Our experimental results have demonstrated that our deep mixture of diverse experts algorithm can achieve very competitive results on large-scale visual recognition 
650 4 |a Journal Article 
700 1 |a Chen, Qiuyu  |e verfasserin  |4 aut 
700 1 |a Kuang, Zhenzhong  |e verfasserin  |4 aut 
700 1 |a Yu, Jun  |e verfasserin  |4 aut 
700 1 |a Zhang, Wei  |e verfasserin  |4 aut 
700 1 |a Fan, Jianping  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 41(2019), 5 vom: 08. Mai, Seite 1072-1087  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:41  |g year:2019  |g number:5  |g day:08  |g month:05  |g pages:1072-1087 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2018.2828821  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 41  |j 2019  |e 5  |b 08  |c 05  |h 1072-1087