Discriminative Optimization : Theory and Applications to Computer Vision

Many computer vision problems are formulated as the optimization of a cost function. This approach faces two main challenges: designing a cost function with a local optimum at an acceptable solution, and developing an efficient numerical method to search for this optimum. While designing such functi...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 41(2019), 4 vom: 08. Apr., Seite 829-843
1. Verfasser: Vongkulbhisal, Jayakorn (VerfasserIn)
Weitere Verfasser: De la Torre, Fernando, Costeira, Joao Paulo
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM286364476
003 DE-627
005 20231225051534.0
007 cr uuu---uuuuu
008 231225s2019 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2018.2826536  |2 doi 
028 5 2 |a pubmed24n0954.xml 
035 |a (DE-627)NLM286364476 
035 |a (NLM)29993905 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Vongkulbhisal, Jayakorn  |e verfasserin  |4 aut 
245 1 0 |a Discriminative Optimization  |b Theory and Applications to Computer Vision 
264 1 |c 2019 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 20.11.2019 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Many computer vision problems are formulated as the optimization of a cost function. This approach faces two main challenges: designing a cost function with a local optimum at an acceptable solution, and developing an efficient numerical method to search for this optimum. While designing such functions is feasible in the noiseless case, the stability and location of local optima are mostly unknown under noise, occlusion, or missing data. In practice, this can result in undesirable local optima or not having a local optimum in the expected place. On the other hand, numerical optimization algorithms in high-dimensional spaces are typically local and often rely on expensive first or second order information to guide the search. To overcome these limitations, we propose Discriminative Optimization (DO), a method that learns search directions from data without the need of a cost function. DO explicitly learns a sequence of updates in the search space that leads to stationary points that correspond to the desired solutions. We provide a formal analysis of DO and illustrate its benefits in the problem of 3D registration, camera pose estimation, and image denoising. We show that DO outperformed or matched state-of-the-art algorithms in terms of accuracy, robustness, and computational efficiency 
650 4 |a Journal Article 
700 1 |a De la Torre, Fernando  |e verfasserin  |4 aut 
700 1 |a Costeira, Joao Paulo  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 41(2019), 4 vom: 08. Apr., Seite 829-843  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:41  |g year:2019  |g number:4  |g day:08  |g month:04  |g pages:829-843 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2018.2826536  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 41  |j 2019  |e 4  |b 08  |c 04  |h 829-843