Unsupervised Deep Learning of Compact Binary Descriptors

Binary descriptors have been widely used for efficient image matching and retrieval. However, most existing binary descriptors are designed with hand-craft sampling patterns or learned with label annotation provided by datasets. In this paper, we propose a new unsupervised deep learning approach, ca...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 41(2019), 6 vom: 20. Juni, Seite 1501-1514
Auteur principal: Kevin Lin (Auteur)
Autres auteurs: Jiwen Lu, Chu-Song Chen, Jie Zhou, Ming-Ting Sun
Format: Article en ligne
Langue:English
Publié: 2019
Accès à la collection:IEEE transactions on pattern analysis and machine intelligence
Sujets:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM286364239
003 DE-627
005 20250223192107.0
007 cr uuu---uuuuu
008 231225s2019 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2018.2833865  |2 doi 
028 5 2 |a pubmed25n0954.xml 
035 |a (DE-627)NLM286364239 
035 |a (NLM)29993880 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Kevin Lin  |e verfasserin  |4 aut 
245 1 0 |a Unsupervised Deep Learning of Compact Binary Descriptors 
264 1 |c 2019 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 20.11.2019 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Binary descriptors have been widely used for efficient image matching and retrieval. However, most existing binary descriptors are designed with hand-craft sampling patterns or learned with label annotation provided by datasets. In this paper, we propose a new unsupervised deep learning approach, called DeepBit, to learn compact binary descriptor for efficient visual object matching. We enforce three criteria on binary descriptors which are learned at the top layer of the deep neural network: 1) minimal quantization loss, 2) evenly distributed codes and 3) transformation invariant bit. Then, we estimate the parameters of the network through the optimization of the proposed objectives with a back-propagation technique. Extensive experimental results on various visual recognition tasks demonstrate the effectiveness of the proposed approach. We further demonstrate our proposed approach can be realized on the simplified deep neural network, and enables efficient image matching and retrieval speed with very competitive accuracies 
650 4 |a Journal Article 
700 1 |a Jiwen Lu  |e verfasserin  |4 aut 
700 1 |a Chu-Song Chen  |e verfasserin  |4 aut 
700 1 |a Jie Zhou  |e verfasserin  |4 aut 
700 1 |a Ming-Ting Sun  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 41(2019), 6 vom: 20. Juni, Seite 1501-1514  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnas 
773 1 8 |g volume:41  |g year:2019  |g number:6  |g day:20  |g month:06  |g pages:1501-1514 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2018.2833865  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 41  |j 2019  |e 6  |b 20  |c 06  |h 1501-1514