|
|
|
|
LEADER |
01000caa a22002652c 4500 |
001 |
NLM286364239 |
003 |
DE-627 |
005 |
20250223192107.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2019 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1109/TPAMI.2018.2833865
|2 doi
|
028 |
5 |
2 |
|a pubmed25n0954.xml
|
035 |
|
|
|a (DE-627)NLM286364239
|
035 |
|
|
|a (NLM)29993880
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Kevin Lin
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Unsupervised Deep Learning of Compact Binary Descriptors
|
264 |
|
1 |
|c 2019
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 20.11.2019
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a Binary descriptors have been widely used for efficient image matching and retrieval. However, most existing binary descriptors are designed with hand-craft sampling patterns or learned with label annotation provided by datasets. In this paper, we propose a new unsupervised deep learning approach, called DeepBit, to learn compact binary descriptor for efficient visual object matching. We enforce three criteria on binary descriptors which are learned at the top layer of the deep neural network: 1) minimal quantization loss, 2) evenly distributed codes and 3) transformation invariant bit. Then, we estimate the parameters of the network through the optimization of the proposed objectives with a back-propagation technique. Extensive experimental results on various visual recognition tasks demonstrate the effectiveness of the proposed approach. We further demonstrate our proposed approach can be realized on the simplified deep neural network, and enables efficient image matching and retrieval speed with very competitive accuracies
|
650 |
|
4 |
|a Journal Article
|
700 |
1 |
|
|a Jiwen Lu
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Chu-Song Chen
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Jie Zhou
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Ming-Ting Sun
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t IEEE transactions on pattern analysis and machine intelligence
|d 1979
|g 41(2019), 6 vom: 20. Juni, Seite 1501-1514
|w (DE-627)NLM098212257
|x 1939-3539
|7 nnas
|
773 |
1 |
8 |
|g volume:41
|g year:2019
|g number:6
|g day:20
|g month:06
|g pages:1501-1514
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1109/TPAMI.2018.2833865
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 41
|j 2019
|e 6
|b 20
|c 06
|h 1501-1514
|