What Makes Objects Similar : A Unified Multi-Metric Learning Approach

Linkages are essentially determined by similarity measures that may be derived from multiple perspectives. For example, spatial linkages are usually generated based on localities of heterogeneous data. Semantic linkages, however, can come from even more properties, such as different physical meaning...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - (2018) vom: 20. Apr.
1. Verfasser: Ye, Han-Jia (VerfasserIn)
Weitere Verfasser: Zhan, De-Chuan, Jiang, Yuan, Zhou, Zhi-Hua
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM286364220
003 DE-627
005 20240229161829.0
007 cr uuu---uuuuu
008 231225s2018 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2018.2829192  |2 doi 
028 5 2 |a pubmed24n1308.xml 
035 |a (DE-627)NLM286364220 
035 |a (NLM)29993879 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Ye, Han-Jia  |e verfasserin  |4 aut 
245 1 0 |a What Makes Objects Similar  |b A Unified Multi-Metric Learning Approach 
264 1 |c 2018 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 27.02.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a Linkages are essentially determined by similarity measures that may be derived from multiple perspectives. For example, spatial linkages are usually generated based on localities of heterogeneous data. Semantic linkages, however, can come from even more properties, such as different physical meanings behind social relations. Many existing metric learning models focus on spatial linkages but leave the rich semantic factors unconsidered. We propose a Unified Multi-Metric Learning framework to exploit multiple types of metrics with respect to overdetermined similarities between linkages. In , a type of combination operator is introduced for distance characterization from multiple perspectives, and thus can introduce flexibilities for representing and utilizing both spatial and semantic linkages. Besides, we propose a uniform solver for , and the theoretical analysis reflects the generalization ability of as well. Extensive experiments on diverse applications exhibit the superior classification performance and comprehensibility of . Visualization results also validate its ability on physical meanings discovery 
650 4 |a Journal Article 
700 1 |a Zhan, De-Chuan  |e verfasserin  |4 aut 
700 1 |a Jiang, Yuan  |e verfasserin  |4 aut 
700 1 |a Zhou, Zhi-Hua  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g (2018) vom: 20. Apr.  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g year:2018  |g day:20  |g month:04 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2018.2829192  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |j 2018  |b 20  |c 04