Permuted Coordinate-wise Optimizations Applied to Lp-regularized Image Deconvolution

Image deconvolution is an ill-posed problem that usually requires prior knowledge for regularizing the feasible solutions. In literature, iterative methods estimate an intrinsic image, minimizing a cost function regularized by specific prior information. However, it is difficult to directly minimize...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 27(2018), 7 vom: 10. Juli, Seite 3556-3570
1. Verfasser: Han, Jaeduk (VerfasserIn)
Weitere Verfasser: Song, Ki Sun, Kim, Jonghyun, Kang, Moon Gi
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM286363755
003 DE-627
005 20231225051533.0
007 cr uuu---uuuuu
008 231225s2018 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2018.2825112  |2 doi 
028 5 2 |a pubmed24n0954.xml 
035 |a (DE-627)NLM286363755 
035 |a (NLM)29993832 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Han, Jaeduk  |e verfasserin  |4 aut 
245 1 0 |a Permuted Coordinate-wise Optimizations Applied to Lp-regularized Image Deconvolution 
264 1 |c 2018 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 20.11.2019 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Image deconvolution is an ill-posed problem that usually requires prior knowledge for regularizing the feasible solutions. In literature, iterative methods estimate an intrinsic image, minimizing a cost function regularized by specific prior information. However, it is difficult to directly minimize the constrained cost function, if a nondifferentiable regularization (e.g., the sparsity constraint) is employed. In this paper, we propose a nonderivative image deconvolution algorithm that solves the under-constrained problem (i.e., a non-blind image deconvolution) by successively solving the permuted subproblems. The subproblems, arranged in permuted sequences, directly minimize the nondifferentiable cost functions. Various Lp-regularized (0 < p ≤ 1, p = 2) objective functions are utilized to demonstrate the pixel-wise optimization, in which the projection operator generates simplified, low-dimensional subproblems for estimating each pixel. The subproblems, after projection, are dealt with in the corresponding hyperplanes containing the adjacent pixels of each image coordinate. Furthermore, successively solving the subproblems can accelerate the deconvolution process with a linear speed-up, by parallelizing the subproblem sequences. The image deconvolution results with various regularization functionals are presented and the linear speed-up is also demonstrated with a parallelized version of the proposed algorithm. Experimental results demonstrate that the proposed method outperforms the conventional methods in terms of the improved-signal-to-noise ratio and structural similarity index measure 
650 4 |a Journal Article 
700 1 |a Song, Ki Sun  |e verfasserin  |4 aut 
700 1 |a Kim, Jonghyun  |e verfasserin  |4 aut 
700 1 |a Kang, Moon Gi  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 27(2018), 7 vom: 10. Juli, Seite 3556-3570  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:27  |g year:2018  |g number:7  |g day:10  |g month:07  |g pages:3556-3570 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2018.2825112  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 27  |j 2018  |e 7  |b 10  |c 07  |h 3556-3570