Deep Spatiality : Unsupervised Learning of Spatially-Enhanced Global and Local 3D Features by Deep Neural Network with Coupled Softmax

The discriminability of Bag-of-Words representations can be increased via encoding the spatial relationship among virtual words on 3D shapes. However, this encoding task involves several issues, including arbitrary mesh resolutions, irregular vertex topology, orientation ambiguity on 3D surface, inv...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 27(2018), 9 vom: 22. Juni, Seite 3049-3063
1. Verfasser: Han, Zhizhong (VerfasserIn)
Weitere Verfasser: Liu, Zhenbao, Vong, Chi-Man, Liua, Yu-Shen, Bu, Shuhui, Han, Junwei, Chen, C L Philip
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM286363488
003 DE-627
005 20231225051533.0
007 cr uuu---uuuuu
008 231225s2018 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2018.2816821  |2 doi 
028 5 2 |a pubmed24n0954.xml 
035 |a (DE-627)NLM286363488 
035 |a (NLM)29993805 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Han, Zhizhong  |e verfasserin  |4 aut 
245 1 0 |a Deep Spatiality  |b Unsupervised Learning of Spatially-Enhanced Global and Local 3D Features by Deep Neural Network with Coupled Softmax 
264 1 |c 2018 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 27.08.2019 
500 |a Date Revised 27.08.2019 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a The discriminability of Bag-of-Words representations can be increased via encoding the spatial relationship among virtual words on 3D shapes. However, this encoding task involves several issues, including arbitrary mesh resolutions, irregular vertex topology, orientation ambiguity on 3D surface, invariance to rigid and non-rigid shape transformations. To address these issues, a novel unsupervised spatial learning framework based on deep neural network, deep spatiality (DS), is proposed. Specifically, DS employs two novel components: spatial context extractor and deep context learner. Spatial context extractor extracts the spatial relationship among virtual words in a local region into a raw spatial representation. Along a consistent circular direction, a directed circular graph is constructed to encode relative positions between pairwise virtual words in each face ring into a relative spatial matrix. By decomposing each relative spatial matrix using SVD, the raw spatial representation is formed, from which deep context learner conducts unsupervised learning of global and local features. Deep context learner is a deep neural network with a novel model structure to adapt the proposed coupled softmax layer, which encodes not only the discriminative information among local regions but also the one among global shapes. Experimental results show that DS outperforms state-of-the-art methods 
650 4 |a Journal Article 
700 1 |a Liu, Zhenbao  |e verfasserin  |4 aut 
700 1 |a Vong, Chi-Man  |e verfasserin  |4 aut 
700 1 |a Liua, Yu-Shen  |e verfasserin  |4 aut 
700 1 |a Bu, Shuhui  |e verfasserin  |4 aut 
700 1 |a Han, Junwei  |e verfasserin  |4 aut 
700 1 |a Chen, C L Philip  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 27(2018), 9 vom: 22. Juni, Seite 3049-3063  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:27  |g year:2018  |g number:9  |g day:22  |g month:06  |g pages:3049-3063 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2018.2816821  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 27  |j 2018  |e 9  |b 22  |c 06  |h 3049-3063