MonoCap : Monocular Human Motion Capture using a CNN Coupled with a Geometric Prior

Recovering 3D full-body human pose is a challenging problem with many applications. It has been successfully addressed by motion capture systems with body worn markers and multiple cameras. In this paper, we address the more challenging case of not only using a single camera but also not leveraging...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 41(2019), 4 vom: 22. Apr., Seite 901-914
1. Verfasser: Zhou, Xiaowei (VerfasserIn)
Weitere Verfasser: Zhu, Menglong, Pavlakos, Georgios, Leonardos, Spyridon, Derpanis, Konstantinos G, Daniilidis, Kostas
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, U.S. Gov't, Non-P.H.S. Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM286363445
003 DE-627
005 20231225051533.0
007 cr uuu---uuuuu
008 231225s2019 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2018.2816031  |2 doi 
028 5 2 |a pubmed24n0954.xml 
035 |a (DE-627)NLM286363445 
035 |a (NLM)29993801 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhou, Xiaowei  |e verfasserin  |4 aut 
245 1 0 |a MonoCap  |b Monocular Human Motion Capture using a CNN Coupled with a Geometric Prior 
264 1 |c 2019 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 20.11.2019 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Recovering 3D full-body human pose is a challenging problem with many applications. It has been successfully addressed by motion capture systems with body worn markers and multiple cameras. In this paper, we address the more challenging case of not only using a single camera but also not leveraging markers: going directly from 2D appearance to 3D geometry. Deep learning approaches have shown remarkable abilities to discriminatively learn 2D appearance features. The missing piece is how to integrate 2D, 3D, and temporal information to recover 3D geometry and account for the uncertainties arising from the discriminative model. We introduce a novel approach that treats 2D joint locations as latent variables whose uncertainty distributions are given by a deep fully convolutional neural network. The unknown 3D poses are modeled by a sparse representation and the 3D parameter estimates are realized via an Expectation-Maximization algorithm, where it is shown that the 2D joint location uncertainties can be conveniently marginalized out during inference. Extensive evaluation on benchmark datasets shows that the proposed approach achieves greater accuracy over state-of-the-art baselines. Notably, the proposed approach does not require synchronized 2D-3D data for training and is applicable to "in-the-wild" images, which is demonstrated with the MPII dataset 
650 4 |a Journal Article 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Zhu, Menglong  |e verfasserin  |4 aut 
700 1 |a Pavlakos, Georgios  |e verfasserin  |4 aut 
700 1 |a Leonardos, Spyridon  |e verfasserin  |4 aut 
700 1 |a Derpanis, Konstantinos G  |e verfasserin  |4 aut 
700 1 |a Daniilidis, Kostas  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 41(2019), 4 vom: 22. Apr., Seite 901-914  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:41  |g year:2019  |g number:4  |g day:22  |g month:04  |g pages:901-914 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2018.2816031  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 41  |j 2019  |e 4  |b 22  |c 04  |h 901-914