Memory Efficient Max Flow for Multi-Label Submodular MRFs

Multi-label submodular Markov Random Fields (MRFs) have been shown to be solvable using max-flow based on an encoding of the labels proposed by Ishikawa, in which each variable Xi is represented by l nodes (where l is the number of labels) arranged in a column. However, this method in general requir...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 41(2019), 4 vom: 26. Apr., Seite 886-900
1. Verfasser: Ajanthan, Thalaiyasingam (VerfasserIn)
Weitere Verfasser: Hartley, Richard, Salzmann, Mathieu
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM286363151
003 DE-627
005 20231225051532.0
007 cr uuu---uuuuu
008 231225s2019 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2018.2819675  |2 doi 
028 5 2 |a pubmed24n0954.xml 
035 |a (DE-627)NLM286363151 
035 |a (NLM)29993772 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Ajanthan, Thalaiyasingam  |e verfasserin  |4 aut 
245 1 0 |a Memory Efficient Max Flow for Multi-Label Submodular MRFs 
264 1 |c 2019 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 20.11.2019 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Multi-label submodular Markov Random Fields (MRFs) have been shown to be solvable using max-flow based on an encoding of the labels proposed by Ishikawa, in which each variable Xi is represented by l nodes (where l is the number of labels) arranged in a column. However, this method in general requires 2 l2 edges for each pair of neighbouring variables. This makes it inapplicable to realistic problems with many variables and labels, due to excessive memory requirement. In this paper, we introduce a variant of the max-flow algorithm that requires much less storage. Consequently, our algorithm makes it possible to optimally solve multi-label submodular problems involving large numbers of variables and labels on a standard computer 
650 4 |a Journal Article 
700 1 |a Hartley, Richard  |e verfasserin  |4 aut 
700 1 |a Salzmann, Mathieu  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 41(2019), 4 vom: 26. Apr., Seite 886-900  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:41  |g year:2019  |g number:4  |g day:26  |g month:04  |g pages:886-900 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2018.2819675  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 41  |j 2019  |e 4  |b 26  |c 04  |h 886-900