Joint Active Learning with Feature Selection via CUR Matrix Decomposition

This paper presents an unsupervised learning approach for simultaneous sample and feature selection, which is in contrast to existing works which mainly tackle these two problems separately. In fact the two tasks are often interleaved with each other: noisy and high-dimensional features will bring a...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 41(2019), 6 vom: 26. Juni, Seite 1382-1396
1. Verfasser: Changsheng Li (VerfasserIn)
Weitere Verfasser: Xiangfeng Wang, Weishan Dong, Junchi Yan, Qingshan Liu, Hongyuan Zha
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM286362538
003 DE-627
005 20231225051531.0
007 cr uuu---uuuuu
008 231225s2019 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2018.2840980  |2 doi 
028 5 2 |a pubmed24n0954.xml 
035 |a (DE-627)NLM286362538 
035 |a (NLM)29993711 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Changsheng Li  |e verfasserin  |4 aut 
245 1 0 |a Joint Active Learning with Feature Selection via CUR Matrix Decomposition 
264 1 |c 2019 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 20.11.2019 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a This paper presents an unsupervised learning approach for simultaneous sample and feature selection, which is in contrast to existing works which mainly tackle these two problems separately. In fact the two tasks are often interleaved with each other: noisy and high-dimensional features will bring adverse effect on sample selection, while informative or representative samples will be beneficial to feature selection. Specifically, we propose a framework to jointly conduct active learning and feature selection based on the CUR matrix decomposition. From the data reconstruction perspective, both the selected samples and features can best approximate the original dataset respectively, such that the selected samples characterized by the features are highly representative. In particular, our method runs in one-shot without the procedure of iterative sample selection for progressive labeling. Thus, our model is especially suitable when there are few labeled samples or even in the absence of supervision, which is a particular challenge for existing methods. As the joint learning problem is NP-hard, the proposed formulation involves a convex but non-smooth optimization problem. We solve it efficiently by an iterative algorithm, and prove its global convergence. Experimental results on publicly available datasets corroborate the efficacy of our method compared with the state-of-the-art 
650 4 |a Journal Article 
700 1 |a Xiangfeng Wang  |e verfasserin  |4 aut 
700 1 |a Weishan Dong  |e verfasserin  |4 aut 
700 1 |a Junchi Yan  |e verfasserin  |4 aut 
700 1 |a Qingshan Liu  |e verfasserin  |4 aut 
700 1 |a Hongyuan Zha  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 41(2019), 6 vom: 26. Juni, Seite 1382-1396  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:41  |g year:2019  |g number:6  |g day:26  |g month:06  |g pages:1382-1396 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2018.2840980  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 41  |j 2019  |e 6  |b 26  |c 06  |h 1382-1396