3D Reconstruction of "In-the-Wild" Faces in Images and Videos

3D Morphable Models (3DMMs) are powerful statistical models of 3D facial shape and texture, and are among the state-of-the-art methods for reconstructing facial shape from single images. With the advent of new 3D sensors, many 3D facial datasets have been collected containing both neutral as well as...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 40(2018), 11 vom: 26. Nov., Seite 2638-2652
1. Verfasser: Booth, James (VerfasserIn)
Weitere Verfasser: Roussos, Anastasios, Ververas, Evangelos, Antonakos, Epameinondas, Ploumpis, Stylianos, Panagakis, Yannis, Zafeiriou, Stefanos
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM286362503
003 DE-627
005 20231225051531.0
007 cr uuu---uuuuu
008 231225s2018 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2018.2832138  |2 doi 
028 5 2 |a pubmed24n0954.xml 
035 |a (DE-627)NLM286362503 
035 |a (NLM)29993707 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Booth, James  |e verfasserin  |4 aut 
245 1 0 |a 3D Reconstruction of "In-the-Wild" Faces in Images and Videos 
264 1 |c 2018 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 03.10.2019 
500 |a Date Revised 07.10.2019 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a 3D Morphable Models (3DMMs) are powerful statistical models of 3D facial shape and texture, and are among the state-of-the-art methods for reconstructing facial shape from single images. With the advent of new 3D sensors, many 3D facial datasets have been collected containing both neutral as well as expressive faces. However, all datasets are captured under controlled conditions. Thus, even though powerful 3D facial shape models can be learnt from such data, it is difficult to build statistical texture models that are sufficient to reconstruct faces captured in unconstrained conditions ("in-the-wild"). In this paper, we propose the first "in-the-wild" 3DMM by combining a statistical model of facial identity and expression shape with an "in-the-wild" texture model. We show that such an approach allows for the development of a greatly simplified fitting procedure for images and videos, as there is no need to optimise with regards to the illumination parameters. We have collected three new benchmarks that combine "in-the-wild" images and video with ground truth 3D facial geometry, the first of their kind, and report extensive quantitative evaluations using them that demonstrate our method is state-of-the-art 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Roussos, Anastasios  |e verfasserin  |4 aut 
700 1 |a Ververas, Evangelos  |e verfasserin  |4 aut 
700 1 |a Antonakos, Epameinondas  |e verfasserin  |4 aut 
700 1 |a Ploumpis, Stylianos  |e verfasserin  |4 aut 
700 1 |a Panagakis, Yannis  |e verfasserin  |4 aut 
700 1 |a Zafeiriou, Stefanos  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 40(2018), 11 vom: 26. Nov., Seite 2638-2652  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:40  |g year:2018  |g number:11  |g day:26  |g month:11  |g pages:2638-2652 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2018.2832138  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 40  |j 2018  |e 11  |b 26  |c 11  |h 2638-2652