Multispectral Image Restoration via Inter- and Intra-block Sparse Estimation based on Physically-induced Joint Spatiospectral Structures

Existing low-level vision algorithms (e.g., those for superresolution, denoising, deblurring etc.) were primarily motivated and optimized for precision in spatial domain. However, high precision in spectral domain is of importance for many applications in scientific and technical fields, such as spe...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 27(2018), 8 vom: 18. Aug., Seite 4038-4051
1. Verfasser: Gao, Dahua (VerfasserIn)
Weitere Verfasser: Wu, Xiaolin
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM286361787
003 DE-627
005 20231225051531.0
007 cr uuu---uuuuu
008 231225s2018 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2018.2828341  |2 doi 
028 5 2 |a pubmed24n0954.xml 
035 |a (DE-627)NLM286361787 
035 |a (NLM)29993635 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Gao, Dahua  |e verfasserin  |4 aut 
245 1 0 |a Multispectral Image Restoration via Inter- and Intra-block Sparse Estimation based on Physically-induced Joint Spatiospectral Structures 
264 1 |c 2018 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 20.11.2019 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Existing low-level vision algorithms (e.g., those for superresolution, denoising, deblurring etc.) were primarily motivated and optimized for precision in spatial domain. However, high precision in spectral domain is of importance for many applications in scientific and technical fields, such as spectral analysis, recognition, and classification. In quest for both high spectral and spatial fidelity we introduce previously-unexplored, physically-induced, joint spatiospectral sparsities to improve existing methods for multispectral image restoration. The bidirectional image formation model is used to reveal that the discontinuities of a multispectral image tend to align spatially across different spectral bands; in other words, the 2D Laplacians of different bands are not only sparse each, but they also agree with one the other in significance positions. Such strongly structured sparsities give rise to a new inter-and intra-block sparse estimation approach. The estimation is performed on 3D spatiospectral sample blocks, rather than on separate 2D patches, one per spectral band or per luminance and chrominance component as in current practice. Moreover, intra-block and inter-block sparsity priors are combined via an intra-block ℓ1,2-norm minimization term and an inter-block low rank term, strengthening the regularization of the underlying inverse problem. The new approach is tested and evaluated on two concrete applications: superresolving and denoising multispectral images; its validity and advantages over the current state of the art are established by empirical results 
650 4 |a Journal Article 
700 1 |a Wu, Xiaolin  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 27(2018), 8 vom: 18. Aug., Seite 4038-4051  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:27  |g year:2018  |g number:8  |g day:18  |g month:08  |g pages:4038-4051 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2018.2828341  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 27  |j 2018  |e 8  |b 18  |c 08  |h 4038-4051