A Comparative Study of Algorithms for Realtime Panoramic Video Blending

Unlike image blending algorithms, video blending algorithms have been little studied. In this paper, we investigate 6 popular blending algorithms-feather blending, multi-band blending, modified Poisson blending, mean value coordinate blending, multi-spline blending and convolution pyramid blending....

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 27(2018), 6 vom: 04. Juni, Seite 2952-2965
1. Verfasser: Zhu, Zhe (VerfasserIn)
Weitere Verfasser: Lu, Jiaming, Wang, Minxuan, Zhang, Songhai, Martin, Ralph R, Liu, Hantao, Hu, Shi-Min
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM286361434
003 DE-627
005 20231225051530.0
007 cr uuu---uuuuu
008 231225s2018 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2018.2808766  |2 doi 
028 5 2 |a pubmed24n0954.xml 
035 |a (DE-627)NLM286361434 
035 |a (NLM)29993600 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhu, Zhe  |e verfasserin  |4 aut 
245 1 2 |a A Comparative Study of Algorithms for Realtime Panoramic Video Blending 
264 1 |c 2018 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 20.11.2019 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Unlike image blending algorithms, video blending algorithms have been little studied. In this paper, we investigate 6 popular blending algorithms-feather blending, multi-band blending, modified Poisson blending, mean value coordinate blending, multi-spline blending and convolution pyramid blending. We consider their application to blending realtime panoramic videos, a key problem in various virtual reality tasks. To evaluate the performances and suitabilities of the 6 algorithms for this problem, we have created a video benchmark with several videos captured under various conditions. We analyze the time and memory needed by the above 6 algorithms, for both CPU and GPU implementations (where readily parallelizable). The visual quality provided by these algorithms is also evaluated both objectively and subjectively. The video benchmark and algorithm implementations are publicly available1 
650 4 |a Journal Article 
700 1 |a Lu, Jiaming  |e verfasserin  |4 aut 
700 1 |a Wang, Minxuan  |e verfasserin  |4 aut 
700 1 |a Zhang, Songhai  |e verfasserin  |4 aut 
700 1 |a Martin, Ralph R  |e verfasserin  |4 aut 
700 1 |a Liu, Hantao  |e verfasserin  |4 aut 
700 1 |a Hu, Shi-Min  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 27(2018), 6 vom: 04. Juni, Seite 2952-2965  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:27  |g year:2018  |g number:6  |g day:04  |g month:06  |g pages:2952-2965 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2018.2808766  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 27  |j 2018  |e 6  |b 04  |c 06  |h 2952-2965