SurfCut : Surfaces of Minimal Paths from Topological Structures

We present SurfCut, an algorithm for extracting a smooth, simple surface with an unknown 3D curve boundary from a noisy 3D image and a seed point. Our method is built on the novel observation that ridge curves of the Euclidean length of minimal paths ending on a level set of the solution of the eiko...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 41(2019), 3 vom: 04. März, Seite 726-739
1. Verfasser: Algarni, Marei (VerfasserIn)
Weitere Verfasser: Sundaramoorthi, Ganesh
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM28636140X
003 DE-627
005 20231225051530.0
007 cr uuu---uuuuu
008 231225s2019 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2018.2811810  |2 doi 
028 5 2 |a pubmed24n0954.xml 
035 |a (DE-627)NLM28636140X 
035 |a (NLM)29993597 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Algarni, Marei  |e verfasserin  |4 aut 
245 1 0 |a SurfCut  |b Surfaces of Minimal Paths from Topological Structures 
264 1 |c 2019 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 20.11.2019 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a We present SurfCut, an algorithm for extracting a smooth, simple surface with an unknown 3D curve boundary from a noisy 3D image and a seed point. Our method is built on the novel observation that ridge curves of the Euclidean length of minimal paths ending on a level set of the solution of the eikonal equation lie on the surface. Our method extracts these ridges and cuts them to form the surface boundary. Our surface extraction algorithm is built on the novel observation that the surface lies in a valley of the eikonal equation solution. The resulting surface is a collection of minimal paths. Using the framework of cubical complexes and Morse theory, we design algorithms to extract ridges and valleys robustly. Experiments on three 3D datasets show the robustness of our method, and that it achieves higher accuracy with lower computational cost than state-of-the-art 
650 4 |a Journal Article 
700 1 |a Sundaramoorthi, Ganesh  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 41(2019), 3 vom: 04. März, Seite 726-739  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:41  |g year:2019  |g number:3  |g day:04  |g month:03  |g pages:726-739 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2018.2811810  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 41  |j 2019  |e 3  |b 04  |c 03  |h 726-739