Mutual Learning Between Saliency and Similarity : Image Cosegmentation via Tree Structured Sparsity and Tree Graph Matching

This paper proposes a unified mutual learning framework based on image hierarchies, which integrates structured sparsity with tree-graph matching to conquer the problem of weakly supervised image cosegmentation. We focus on the interaction between two common-object properties: saliency and similarit...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 27(2018), 9 vom: 03. Sept., Seite 4690-4704
1. Verfasser: Ren, Yan (VerfasserIn)
Weitere Verfasser: Jiao, Licheng, Yang, Shuyuan, Wang, Shuang
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM286360918
003 DE-627
005 20231225051529.0
007 cr uuu---uuuuu
008 231225s2018 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2018.2842207  |2 doi 
028 5 2 |a pubmed24n0954.xml 
035 |a (DE-627)NLM286360918 
035 |a (NLM)29993547 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Ren, Yan  |e verfasserin  |4 aut 
245 1 0 |a Mutual Learning Between Saliency and Similarity  |b Image Cosegmentation via Tree Structured Sparsity and Tree Graph Matching 
264 1 |c 2018 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 20.11.2019 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a This paper proposes a unified mutual learning framework based on image hierarchies, which integrates structured sparsity with tree-graph matching to conquer the problem of weakly supervised image cosegmentation. We focus on the interaction between two common-object properties: saliency and similarity. Most existing cosegmentation methods only pay emphasis on either of them. The proposed method realizes the learning of the prior knowledge for structured sparsity with the help of treegraph matching, which is capable of generating object-oriented salient regions. Meanwhile, it also reduces the searching space and computational complexity of tree-graph matching with the attendance of structured sparsity. We intend to thoughtfully exploit the hierarchically geometrical relationships of coherent objects. Experimental results compared with the state-of-thearts on benchmark datasets confirm that the mutual learning framework are capable of effectively delineating co-existing object patterns in multiple images 
650 4 |a Journal Article 
700 1 |a Jiao, Licheng  |e verfasserin  |4 aut 
700 1 |a Yang, Shuyuan  |e verfasserin  |4 aut 
700 1 |a Wang, Shuang  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 27(2018), 9 vom: 03. Sept., Seite 4690-4704  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:27  |g year:2018  |g number:9  |g day:03  |g month:09  |g pages:4690-4704 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2018.2842207  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 27  |j 2018  |e 9  |b 03  |c 09  |h 4690-4704