DeepIGeoS : A Deep Interactive Geodesic Framework for Medical Image Segmentation

Accurate medical image segmentation is essential for diagnosis, surgical planning and many other applications. Convolutional Neural Networks (CNNs) have become the state-of-the-art automatic segmentation methods. However, fully automatic results may still need to be refined to become accurate and ro...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 41(2019), 7 vom: 03. Juli, Seite 1559-1572
1. Verfasser: Wang, Guotai (VerfasserIn)
Weitere Verfasser: Zuluaga, Maria A, Li, Wenqi, Pratt, Rosalind, Patel, Premal A, Aertsen, Michael, Doel, Tom, David, Anna L, Deprest, Jan, Ourselin, Sebastien, Vercauteren, Tom
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000caa a22002652 4500
001 NLM286360748
003 DE-627
005 20250223192033.0
007 cr uuu---uuuuu
008 231225s2019 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2018.2840695  |2 doi 
028 5 2 |a pubmed25n0954.xml 
035 |a (DE-627)NLM286360748 
035 |a (NLM)29993532 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wang, Guotai  |e verfasserin  |4 aut 
245 1 0 |a DeepIGeoS  |b A Deep Interactive Geodesic Framework for Medical Image Segmentation 
264 1 |c 2019 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 04.02.2020 
500 |a Date Revised 12.10.2023 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Accurate medical image segmentation is essential for diagnosis, surgical planning and many other applications. Convolutional Neural Networks (CNNs) have become the state-of-the-art automatic segmentation methods. However, fully automatic results may still need to be refined to become accurate and robust enough for clinical use. We propose a deep learning-based interactive segmentation method to improve the results obtained by an automatic CNN and to reduce user interactions during refinement for higher accuracy. We use one CNN to obtain an initial automatic segmentation, on which user interactions are added to indicate mis-segmentations. Another CNN takes as input the user interactions with the initial segmentation and gives a refined result. We propose to combine user interactions with CNNs through geodesic distance transforms, and propose a resolution-preserving network that gives a better dense prediction. In addition, we integrate user interactions as hard constraints into a back-propagatable Conditional Random Field. We validated the proposed framework in the context of 2D placenta segmentation from fetal MRI and 3D brain tumor segmentation from FLAIR images. Experimental results show our method achieves a large improvement from automatic CNNs, and obtains comparable and even higher accuracy with fewer user interventions and less time compared with traditional interactive methods 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Zuluaga, Maria A  |e verfasserin  |4 aut 
700 1 |a Li, Wenqi  |e verfasserin  |4 aut 
700 1 |a Pratt, Rosalind  |e verfasserin  |4 aut 
700 1 |a Patel, Premal A  |e verfasserin  |4 aut 
700 1 |a Aertsen, Michael  |e verfasserin  |4 aut 
700 1 |a Doel, Tom  |e verfasserin  |4 aut 
700 1 |a David, Anna L  |e verfasserin  |4 aut 
700 1 |a Deprest, Jan  |e verfasserin  |4 aut 
700 1 |a Ourselin, Sebastien  |e verfasserin  |4 aut 
700 1 |a Vercauteren, Tom  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 41(2019), 7 vom: 03. Juli, Seite 1559-1572  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:41  |g year:2019  |g number:7  |g day:03  |g month:07  |g pages:1559-1572 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2018.2840695  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 41  |j 2019  |e 7  |b 03  |c 07  |h 1559-1572