Kernel Clustering : Density Biases and Solutions

Kernel methods are popular in clustering due to their generality and discriminating power. However, we show that many kernel clustering criteria have density biases theoretically explaining some practically significant artifacts empirically observed in the past. For example, we provide conditions an...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 41(2019), 1 vom: 07. Jan., Seite 136-147
1. Verfasser: Marin, Dmitrii (VerfasserIn)
Weitere Verfasser: Tang, Meng, Ayed, Ismail Ben, Boykov, Yuri
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM286328666
003 DE-627
005 20231225051443.0
007 cr uuu---uuuuu
008 231225s2019 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2017.2780166  |2 doi 
028 5 2 |a pubmed24n0954.xml 
035 |a (DE-627)NLM286328666 
035 |a (NLM)29990278 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Marin, Dmitrii  |e verfasserin  |4 aut 
245 1 0 |a Kernel Clustering  |b Density Biases and Solutions 
264 1 |c 2019 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 20.11.2019 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Kernel methods are popular in clustering due to their generality and discriminating power. However, we show that many kernel clustering criteria have density biases theoretically explaining some practically significant artifacts empirically observed in the past. For example, we provide conditions and formally prove the density mode isolation bias in kernel K-means for a common class of kernels. We call it Breiman's bias due to its similarity to the histogram mode isolation previously discovered by Breiman in decision tree learning with Gini impurity. We also extend our analysis to other popular kernel clustering methods, e.g., average/normalized cut or dominant sets, where density biases can take different forms. For example, splitting isolated points by cut-based criteria is essentially the sparsest subset bias, which is the opposite of the density mode bias. Our findings suggest that a principled solution for density biases in kernel clustering should directly address data inhomogeneity. We show that density equalization can be implicitly achieved using either locally adaptive weights or locally adaptive kernels. Moreover, density equalization makes many popular kernel clustering objectives equivalent. Our synthetic and real data experiments illustrate density biases and proposed solutions. We anticipate that theoretical understanding of kernel clustering limitations and their principled solutions will be important for a broad spectrum of data analysis applications across the disciplines 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Tang, Meng  |e verfasserin  |4 aut 
700 1 |a Ayed, Ismail Ben  |e verfasserin  |4 aut 
700 1 |a Boykov, Yuri  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 41(2019), 1 vom: 07. Jan., Seite 136-147  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:41  |g year:2019  |g number:1  |g day:07  |g month:01  |g pages:136-147 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2017.2780166  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 41  |j 2019  |e 1  |b 07  |c 01  |h 136-147