Atomic Representation-Based Classification : Theory, Algorithm, and Applications

Representation-based classification (RC) methods such as sparse RC (SRC) have attracted great interest in pattern recognition recently. Despite their empirical success, few theoretical results are reported to justify their effectiveness. In this paper, we establish the theoretical guarantees for a g...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 41(2019), 1 vom: 14. Jan., Seite 6-19
1. Verfasser: Wang, Yulong (VerfasserIn)
Weitere Verfasser: Tang, Yuan Yan, Li, Luoqing, Chen, Hong, Pan, Jianjia
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000caa a22002652 4500
001 NLM286328232
003 DE-627
005 20250223191343.0
007 cr uuu---uuuuu
008 231225s2019 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2017.2780094  |2 doi 
028 5 2 |a pubmed25n0954.xml 
035 |a (DE-627)NLM286328232 
035 |a (NLM)29990233 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wang, Yulong  |e verfasserin  |4 aut 
245 1 0 |a Atomic Representation-Based Classification  |b Theory, Algorithm, and Applications 
264 1 |c 2019 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 20.11.2019 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Representation-based classification (RC) methods such as sparse RC (SRC) have attracted great interest in pattern recognition recently. Despite their empirical success, few theoretical results are reported to justify their effectiveness. In this paper, we establish the theoretical guarantees for a general unified framework termed as atomic representation-based classification (ARC), which includes most RC methods as special cases. We introduce a new condition called atomic classification condition (ACC), which reveals important geometric insights for the theory of ARC. We show that under such condition ARC is provably effective in correctly recognizing any new test sample, even corrupted with noise. Our theoretical analysis significantly broadens the range of conditions under which RC methods succeed for classification in the following two aspects: (1) prior theoretical advances of RC are mainly concerned with the single SRC method while our theory can apply to the general unified ARC framework, including SRC and many other RC methods; and (2) previous works are confined to the analysis of noiseless test data while we provide theoretical guarantees for ARC using both noiseless and noisy test data. Numerical results are provided to validate and complement our theoretical analysis of ARC and its important special cases for both noiseless and noisy test data 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Tang, Yuan Yan  |e verfasserin  |4 aut 
700 1 |a Li, Luoqing  |e verfasserin  |4 aut 
700 1 |a Chen, Hong  |e verfasserin  |4 aut 
700 1 |a Pan, Jianjia  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 41(2019), 1 vom: 14. Jan., Seite 6-19  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:41  |g year:2019  |g number:1  |g day:14  |g month:01  |g pages:6-19 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2017.2780094  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 41  |j 2019  |e 1  |b 14  |c 01  |h 6-19