Exploiting Spatial-Temporal Locality of Tracking via Structured Dictionary Learning

In this paper, a novel spatial-temporal locality is proposed and unified via a discriminative dictionary learning framework for visual tracking. By exploring the strong local correlations between temporally obtained target and their spatially distributed nearby background neighbors, a spatial-tempor...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 27(2018), 3 vom: 14. März, Seite 1282-1296
1. Verfasser: Yao Sui (VerfasserIn)
Weitere Verfasser: Guanghui Wang, Li Zhang, Ming-Hsuan Yang
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM286327813
003 DE-627
005 20231225051442.0
007 cr uuu---uuuuu
008 231225s2018 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2017.2779275  |2 doi 
028 5 2 |a pubmed24n0954.xml 
035 |a (DE-627)NLM286327813 
035 |a (NLM)29990191 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Yao Sui  |e verfasserin  |4 aut 
245 1 0 |a Exploiting Spatial-Temporal Locality of Tracking via Structured Dictionary Learning 
264 1 |c 2018 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 11.12.2018 
500 |a Date Revised 11.12.2018 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a In this paper, a novel spatial-temporal locality is proposed and unified via a discriminative dictionary learning framework for visual tracking. By exploring the strong local correlations between temporally obtained target and their spatially distributed nearby background neighbors, a spatial-temporal locality is obtained. The locality is formulated as a subspace model and exploited under a unified structure of discriminative dictionary learning with a subspace structure. Using the learned dictionary, the target and its background can be described and distinguished effectively through their sparse codes. As a result, the target is localized by integrating both the descriptive and the discriminative qualities. Extensive experiments on various challenging video sequences demonstrate the superior performance of proposed algorithm over the other state-of-the-art approaches 
650 4 |a Journal Article 
700 1 |a Guanghui Wang  |e verfasserin  |4 aut 
700 1 |a Li Zhang  |e verfasserin  |4 aut 
700 1 |a Ming-Hsuan Yang  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 27(2018), 3 vom: 14. März, Seite 1282-1296  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:27  |g year:2018  |g number:3  |g day:14  |g month:03  |g pages:1282-1296 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2017.2779275  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 27  |j 2018  |e 3  |b 14  |c 03  |h 1282-1296