Efficient Group-n Encoding and Decoding for Facial Age Estimation

Different ages are closely related especially among the adjacent ages because aging is a slow and extremely non-stationary process with much randomness. To explore the relationship between the real age and its adjacent ages, an age group-n encoding (AGEn) method is proposed in this paper. In our mod...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 40(2018), 11 vom: 14. Nov., Seite 2610-2623
1. Verfasser: Tan, Zichang (VerfasserIn)
Weitere Verfasser: Wan, Jun, Lei, Zhen, Zhi, Ruicong, Guo, Guodong, Li, Stan Z
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Comparative Study Evaluation Study Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM286327783
003 DE-627
005 20231225051442.0
007 cr uuu---uuuuu
008 231225s2018 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2017.2779808  |2 doi 
028 5 2 |a pubmed24n0954.xml 
035 |a (DE-627)NLM286327783 
035 |a (NLM)29990187 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Tan, Zichang  |e verfasserin  |4 aut 
245 1 0 |a Efficient Group-n Encoding and Decoding for Facial Age Estimation 
264 1 |c 2018 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 03.10.2019 
500 |a Date Revised 10.12.2019 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Different ages are closely related especially among the adjacent ages because aging is a slow and extremely non-stationary process with much randomness. To explore the relationship between the real age and its adjacent ages, an age group-n encoding (AGEn) method is proposed in this paper. In our model, adjacent ages are grouped into the same group and each age corresponds to n groups. The ages grouped into the same group would be regarded as an independent class in the training stage. On this basis, the original age estimation problem can be transformed into a series of binary classification sub-problems. And a deep Convolutional Neural Networks (CNN) with multiple classifiers is designed to cope with such sub-problems. Later, a Local Age Decoding (LAD) strategy is further presented to accelerate the prediction process, which locally decodes the estimated age value from ordinal classifiers. Besides, to alleviate the imbalance data learning problem of each classifier, a penalty factor is inserted into the unified objective function to favor the minority class. To compare with state-of-the-art methods, we evaluate the proposed method on FG-NET, MORPH II, CACD and Chalearn LAP 2015 databases and it achieves the best performance 
650 4 |a Comparative Study 
650 4 |a Evaluation Study 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Wan, Jun  |e verfasserin  |4 aut 
700 1 |a Lei, Zhen  |e verfasserin  |4 aut 
700 1 |a Zhi, Ruicong  |e verfasserin  |4 aut 
700 1 |a Guo, Guodong  |e verfasserin  |4 aut 
700 1 |a Li, Stan Z  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 40(2018), 11 vom: 14. Nov., Seite 2610-2623  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:40  |g year:2018  |g number:11  |g day:14  |g month:11  |g pages:2610-2623 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2017.2779808  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 40  |j 2018  |e 11  |b 14  |c 11  |h 2610-2623